
RANSMISSION LINES

Nur Adlina HJ Mohd Ariff Rizegillah

TRANSMISSION LINES

Nur Adlina binti Mohd Rani Hj. Mohd Ariff bin Ramli Wan Rizegillah binti Hj. Abdul Wahid

Department of Electrical Engineering Sultan Mizan Zainal Abidin Polytechnic

EDITION 2021

First Publishing 2021

All rights reserved. No part of this book (article, illustration and content) may be reproduced or used in any form or by any means, electronic or mechanical including photocopying, recording or otherwise without the prior permission of the author and publisher.

Published by: Department of Electrical Engineering Politeknik Sultan Mizan Zainal Abidin KM. 08, Jalan Paka, 23000 Dungun, Terengganu

Perpustakaan Negara Malaysia

Cataloguing-in-Publication Data

Nur Adlina Mohd. Rani, 1983-TRANSMISSION LINES / Nur Adlina Binti Mohd Rani, Hj. Mohd Ariff Bin Ramli, Wan Razegillah Binti Hj Abdul Wahid Mode of access: Internet eISBN 978-967-2099-71-0

- 1. Electric lines.
- 2. Electric power transmission.
- 3. Telecommunication lines.
- 4. Government publications--Malaysia.
- 5. Electronic books.

I. Mohd. Ariff Ramli, 1983-. II. Wan Razegillah Hj. Abdul Wahid, 1981-. III. Title. 621.319

TRANSMISSION LINES EDITION 2021

e ISBN 978-967-2099-71-0

PREFACE

In the name of Allah, The Most Gracious and Merciful. All praise to Allah S.W.T for His great loving kindness and blessing, this E-book is successfully published.

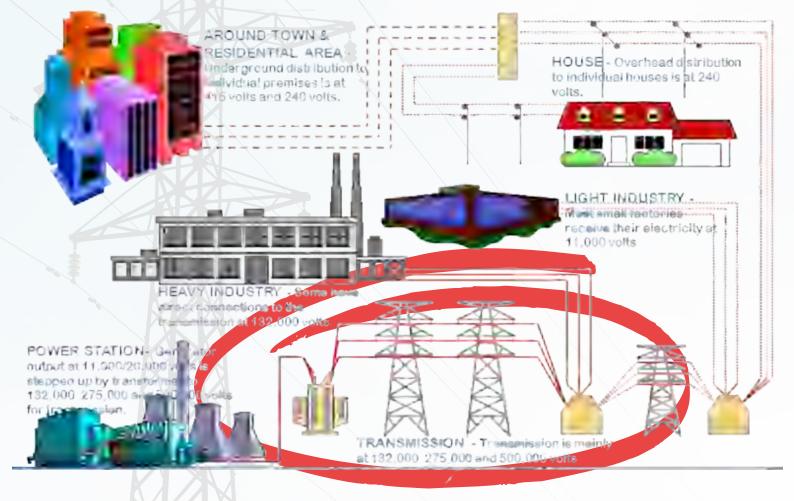
The authors would like to express deepest appreciation to all those who provided the possibility in publishing this E-book especially friends and colleagues. Many thanks also go to the Electrical Engineering Department team for the support and guidance throughout the process of completing this E-book.

Thank You.

NUR ADLINA BINTI MOHD RANI Lecturer Department of Electrical Engineering, PSMZA adlina@psmza.edu.my

HJ MOHD ARIFF BIN RAMLI Lecturer Department of Electrical Engineering, PSMZA ariff@psmza.edu.my

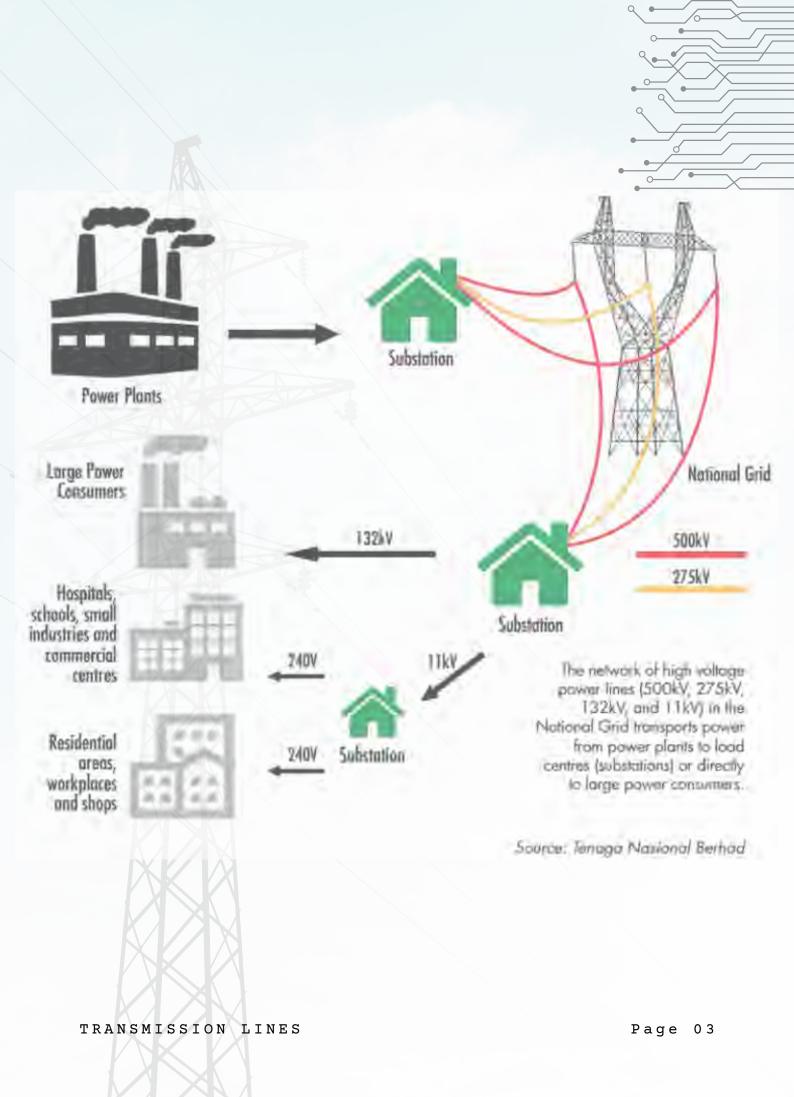
WAN RIZEGILLAH BINTI HJ ABDUL WAHID Lecturer Department of Electrical Engineering, PSMZA rizegillah@psmza.edu.my


TABLE OF CONTENT

- 01 Introduction to Transmission Lines
- 04 Function of Transmission Lines
- 05 Types of Transmission Lines
- 09 Equivalent Circuit Diagram for Transmission Lines
- 13 Single Phase Phasor Diagram
- 17 Voltage Regulation for Transmission Lines
- 29 Losses in Transmission Lines
- 35 Transmission Insulators
- 50 References

ABSTRAGT

This digital writing will provide students with the concepts of transmission lines of electrical power system such as their functions, types of transmission lines, equivalent circuit diagram, single phase phasor diagram, voltage regulation, the losses in transmission line, and the transmission insulators. It is organized base on syllabus of Power System (DET30053) course, Department of Electrical Engineering, Polytechnic of Malaysia.


INTRODUCTION TO TRANSMISSION LINES

An Overview

TRANSMISSION LINES

FUNCTION OF TRANSMISSION LINES

A **TRANSMISSION LINES** is used for transmission of electrical power from generating substation to the various distribution units. It transmits the wave of voltage and current from one end to another. The transmission line is made up of conductor having a uniform cross-section along the line. Air act as an insulating or dielectric medium between the conductors.

TYPES OF TRANSMISSION LINES

Overhead Transmission Lines

Short Transmission Line
 Medium Transmission Line
 Long Transmission Line

Underground Cables

TRANSMISSION LINES

Short Transmission Line

TRANSMISSION LINES

Long

Transmission Line

Short Transmission Line

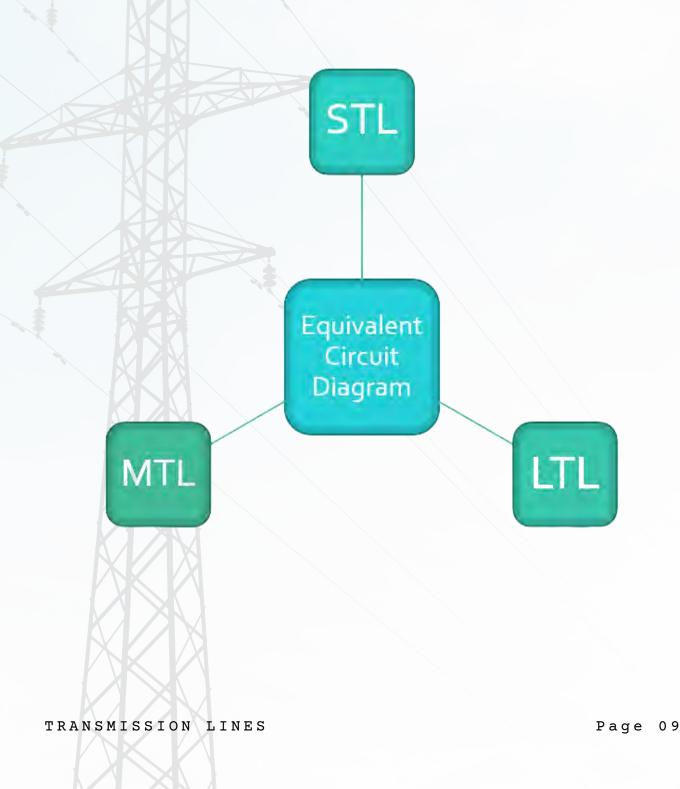
- Length of an overhead transmission line up to about 80km and line voltage comparatively low (<20kV)
- The capacitance effects are small and can be neglected
- Only resistance and inductance of the line are taken into account

Medium Transmission Line

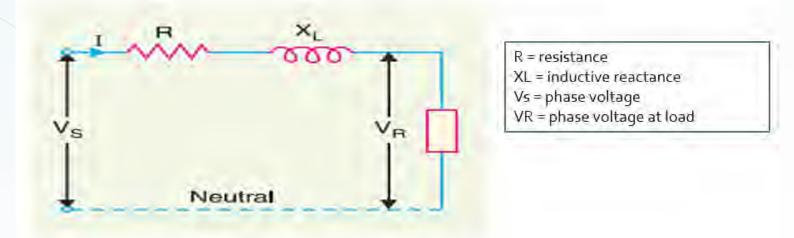
- Length of an overhead transmission line is about 80 240km and the line voltage is moderately high (>20kV < 100kV)
- The capacitance effect are taken into account

Long Transmission Line

- Length of overhead transmission line is > 240km and line voltage is very high (> 100kV)
- For the treatment of such a line, the line constants are considered uniformly distributed over the whole length of the line and rigorous methods are employed for solution

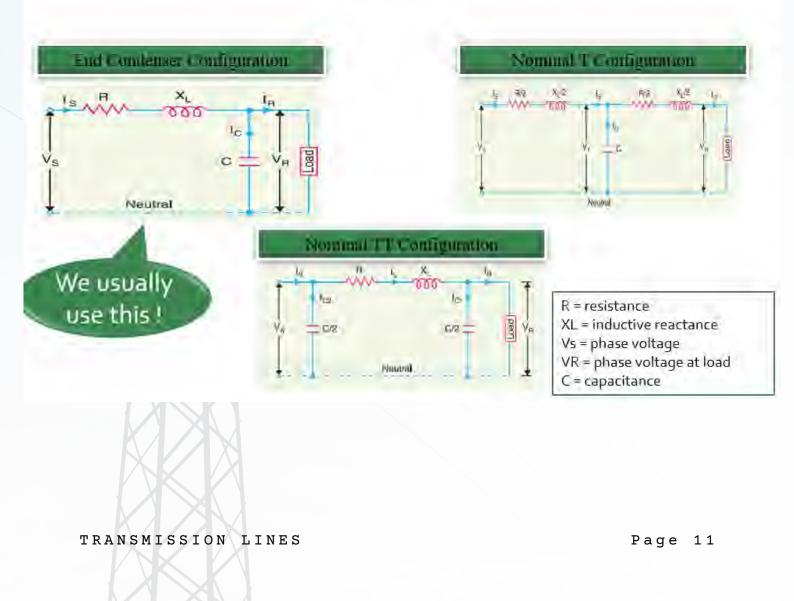


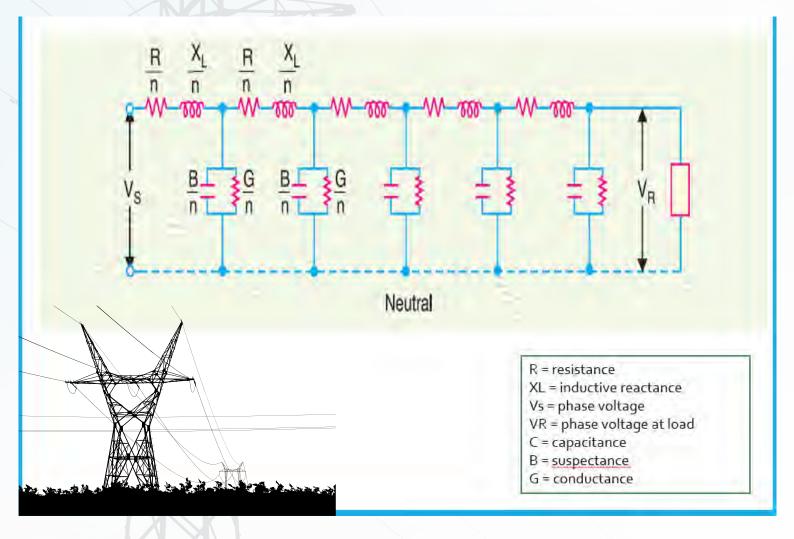
	Short Transmission Line	Medium Transmission Line	Long Transmission Line
Length	<80km	81km – 240km	>240km
Operating voltage	<20kV	21kV – 100kV	>100kV
Element Effected	Resistance Inductance	Resistance Inductance Capacitance	Resistance Inductance Capacitance Conductance



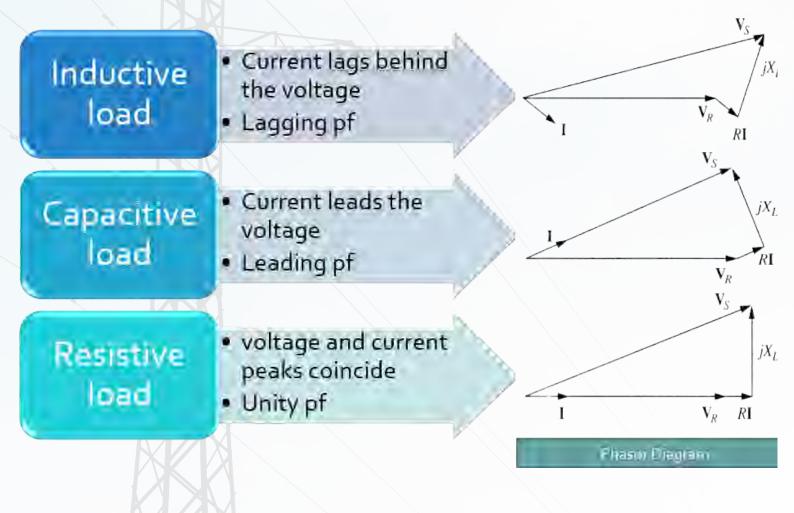
Equivalent Circuit Diagram for Transmission Lines

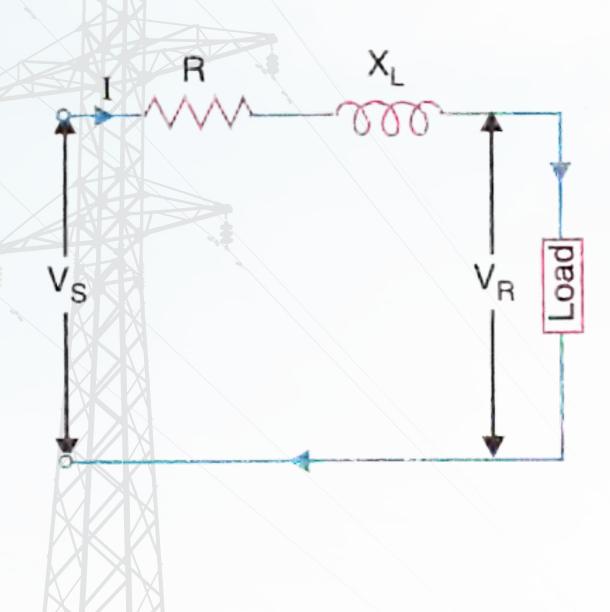
Equivalent Circuit Diagram for Short Transmission Line

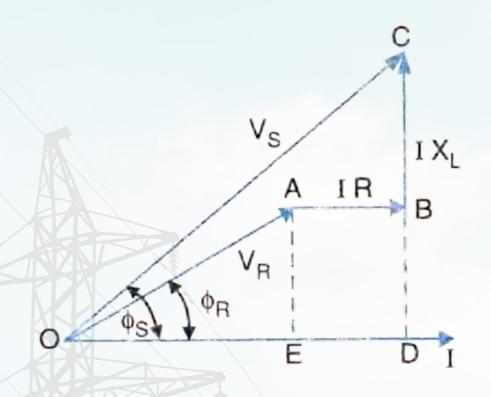

The resistance and inductance are lumped together, the capacitance of the line is ignored so the admittance is ignored.


TRANSMISSION LINES

Equivalent Circuit Diagram for Medium Transmission Line


• The medium length lines can be model in three configuration.


Equivalent Circuit Diagram for Long Transmission Line


Single Phase Phasor Diagram

Single Phase Short Transmission Lines

TRANSMISSION LINES

• From the right angled triangle ODC, we get,

$$(OC)^{2} = (OD)^{2} + (DC)^{2}$$
or $V_{S}^{2} = (OE + ED)^{2} + (DB + BC)^{2}$

$$= (V_{R} \cos \Phi_{R} + IR)^{2} + (V_{R} \sin \Phi_{R} + IX_{L})^{2}$$
 $V_{S} = \sqrt{(V_{R} \cos \Phi_{R} + IR)^{2} + (V_{R} \sin \Phi_{R} + IX_{L})^{2}}$
% voltage regulation
$$= \frac{V_{S} - V_{R}}{V_{R}} \times 100$$
ending end p.f, $\cos \Phi_{S} = \frac{OD}{OC} = \frac{V_{R}COS \phi_{R} + IR}{V_{S}}$
Power delivered
$$= V_{R}I_{R} \cos \Phi_{R}$$
Line Losses
$$= I^{2}R$$
Power sent out
$$= V_{R}I_{R} \cos \Phi_{R} + I^{2}R$$
% Transmission
$$= \frac{Power delivered}{Power sent out} \times 100$$

$$= \frac{V_{R}I_{R} \cos \Phi_{R}}{V_{R}I_{R} \cos \Phi_{R} + I^{2}R} \times 100$$

TRANSMISSION LINES

I = load current

$$R = 1000$$
 resistance *i.e.*, resistance of both conductors

 $X_L =$ loop reactance

 V_R = receiving end voltage

- $\cos \varphi_R$ = receiving end power factor (lagging)
 - $V_S =$ sending end voltage
- $\cos \varphi_5 =$ sending end power factor

VOLTAGE REGULATION CONCEPT

Regulation

&

Per Unit Regulation

When a transmission line is carrying current, there is a voltage drop in the line due to resistance and inductance of the line.

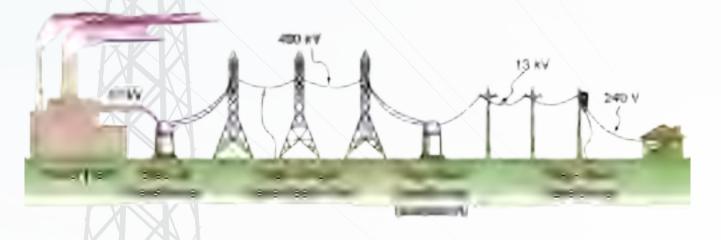
The result is that receiving end voltage (VR) of the line is generally less than the sending end voltage (VS).

This voltage drop (VS – VR) in the line is expressed as a percentage of receiving end voltage VR and is called voltage regulation.

 $\frac{|V_S| - |V_R|}{|V_R|} \times 100$ Percentage of voltage regulation = Page 18 TRANSMISSION LINES

Transmission Effiency

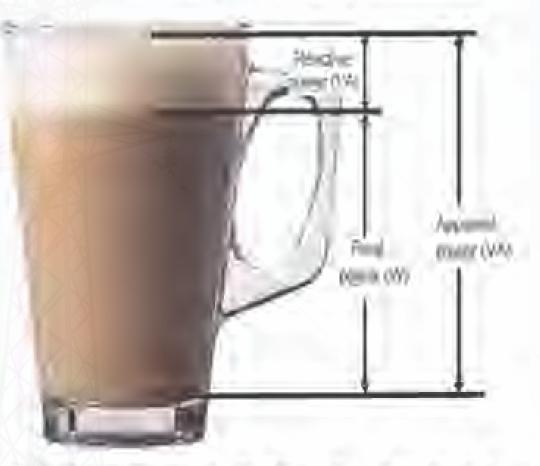
The power obtained at the receiving end of a transmission line is generally less than the sending end power due to losses in the line resistance.


The ratio of receiving end power to the sending end power of a transmission line is known as the **transmission efficiency** of the line;

% transmission efficiency =
$$\frac{Receiving end power}{Sending end Power}$$
 X 100
= $\frac{V_R I_R \cos \Phi_R}{V_S I_S \cos \Phi_S}$ X 100 @
= $\frac{Power delivered}{Power sent out}$ X 100
= $\frac{V_R I_R \cos \Phi_R}{V_R I_R \cos \Phi_{R+} I^2 R}$ X 100
TRANSMISSION LINES

The Effect of High & Low Voltage on Transmission Efficiency

The **main advantages** of transmitting power over transmission lines on high voltage are :


- Cost of conductor is reduced for given power.
- Voltage drop in lines is reduced.
- Efficiency of transmission line is increased.

Calculate The Current Based on Apparent Power & Real Power

Latte Analogy

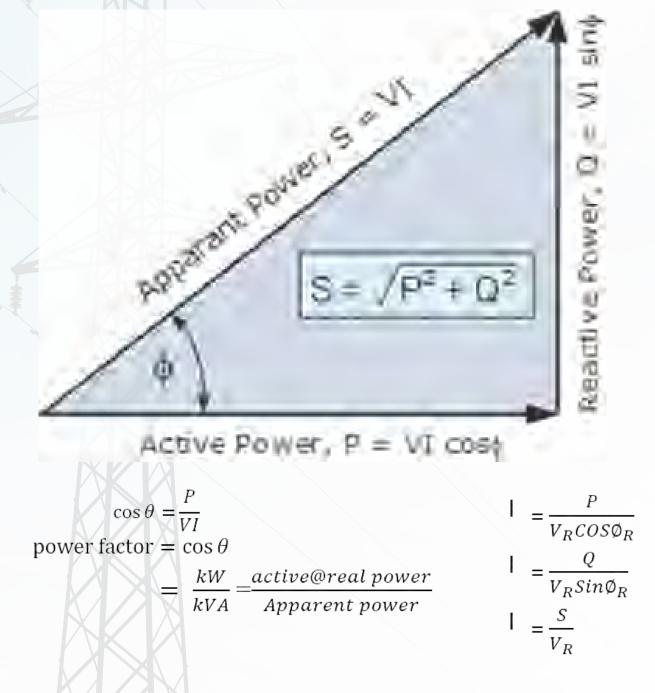
Power Factor is the ratio of coffee (M) to coffee + foam (VA). As the foam increases and coffee decreases, the PF is induced. This tatte looks like it has a Power Factor of .8.

Page 21

Calculate The Current Based on Apparent Power & Real Power

A frothy latte = Poor power factor correction

> Latte glass = Capacity = kVA Coffee = Useful energy = kW


Froth = Waste capacity

A perfect body =

Good power factor correction

Calculate The Current Based on Apparent Power & Real Power

TRANSMISSION LINES

Example:

A single phase transmission line transfer 1100kW power to the factory with the voltage, 11kV and lagging power factor 0.8. This line have 2Ω resistance and 3Ω reactance. Calculate:

i) Voltage at the end of transmissionii) Percentage of voltage regulationiii) Transmission Efficiency

• Given;

i)

- Lines Resistance, $R = 2\Omega$
- Lines Reactance, $X = 3\Omega$
- Transmission Power, P = 1100kW
- Power Factor, pf = 0.8 (lagging)
- Receiving End Voltage, VR = 11000V

Load Current, I =
$$\frac{P \times 1000}{V_R \cos \phi_R}$$
$$I = \frac{1100 \times 1000}{11000 \times 0.8}$$
$$I = 125 A$$

Voltage at the end of transmission

$$\cos \Phi_{R} = 0.8$$

$$\sin \Phi_{R} = 0.6$$

$$V_{5} = \sqrt{(V_{R} \cos \Phi_{R} + IR)^{2} + (V_{R} \sin \Phi_{R} + IX_{L})^{2}}$$

$$V_{5} = \sqrt{(11000 \times 0.8 + 125 \times 8)^{2} + (11000 \times 0.6 + 125 \times 3)^{2}}$$

$$= 11426V$$

ii), % voltage regulation

$$VR = 11000V$$

% voltage regulation = $\frac{V_S - V_R}{V_R} \times 100$
= $\frac{11426 - 11000}{11000} \times 100$
= 3.873%
iii) Transmission Efficiency
losses in lines = I^2R
= $(125)^2 \times 2$
= $31.25kW$
% transmission efficiency = $\frac{Power \ delivered}{Power \ sent \ out} \times 100$
= $\frac{1100k}{1100k + 31.25k} \times 100$
= 97.24%

Vs = 11426V

Exercise 1

A single phase overhead transmission line delivers 1100kW at 33 kV at 0.8 p.f lagging. The total resistance and inductive reactance of the line are 10 Ω and 15 Ω respectively. Determine :

(i)sending end voltage(ii)sending end power factor(iii) transmission efficiency

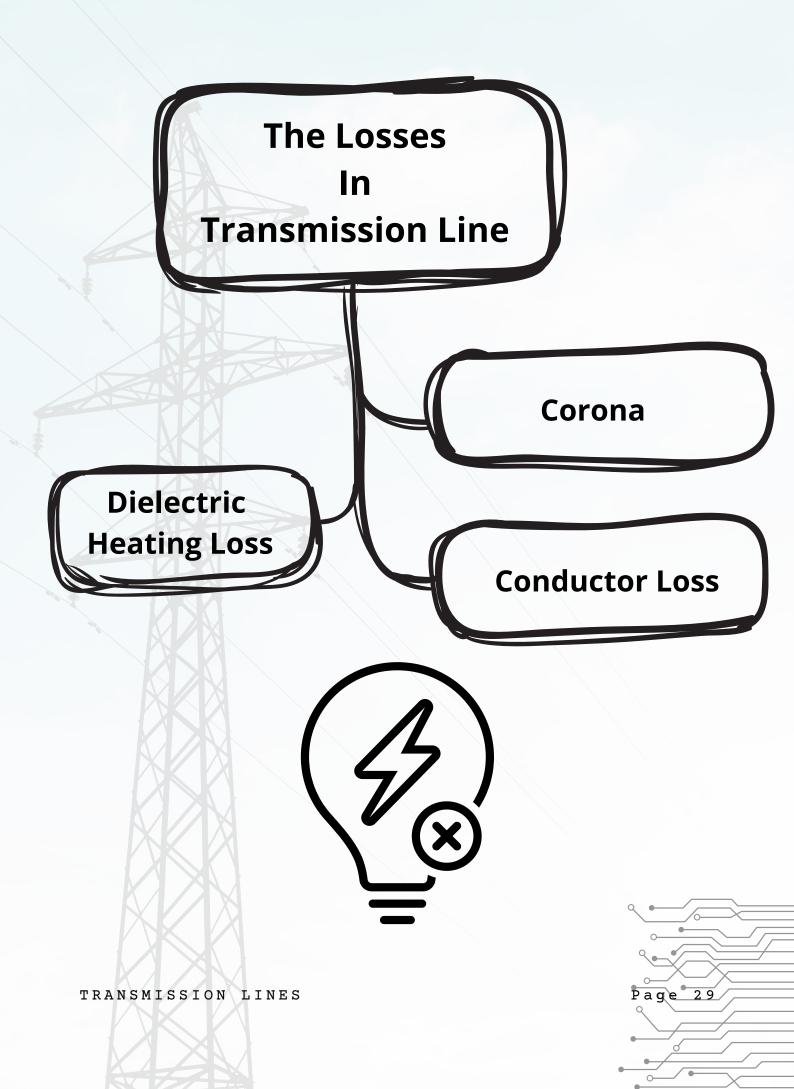
(Ans: 33709.31V, 0.795, 98.44%)

Exercise 2

A single-phase overhead transmission line delivers 4000kW at 11 kV at 0.8 p.f lagging. If resistance and reactance per conductor are 0.15 Ω and 0.02 Ω respectively. Calculate :

(i)percentage voltage regulation (ii)sending end power factor (iii) line losses

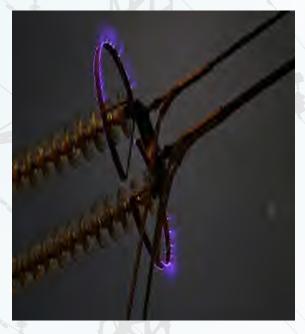
(Ans: 0.545%, 0.8, 30.992kW)



Exercise 3

A single-phase 11 kV line with a length of 15km is to transmit 500 kVA. The inductive reactance of the line is 0.5 Ω /km and the resistance is 0.3 Ω /km. **Calculate the efficiency and regulation of the line for 0.8 lagging power factor.**

(Ans: 97.729%, 3.355%)

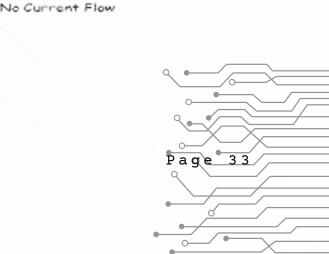


•Corona was electrical discharge emerge around overhead line conductor, due to air flow where would disturb radio waves and creating lost power. When a normal ac voltage is applied across two conductors with enough spacing between them, there is no change in the atmospheric conditions surrounding the conductors. But if the voltage exceeds a particular limiting value, then the air surrounding the conductors will gets ionized and luminous glow (weak purple color) will rise with hissing sound. This phenomena is called corona.

The corona discharge around a high voltage coil.

Large corona discharge (white) around conductors energized by a 1.5 million volt transformer in a laboratory.

- Power loss
- The 3rd harmonic components makes the current non-sinusoidal and this increase the corona loss.
- The ozone gas formed chemically reacts with the conductor and can cause corrosion.
- Light (faint violet glow).
- Audible noise (hissing or cracking).
- Insulation damage.
- Radio, television and computer interference.



•Current flows through a transmission line and a line has a finite resistance there is an un-avoidable power loss

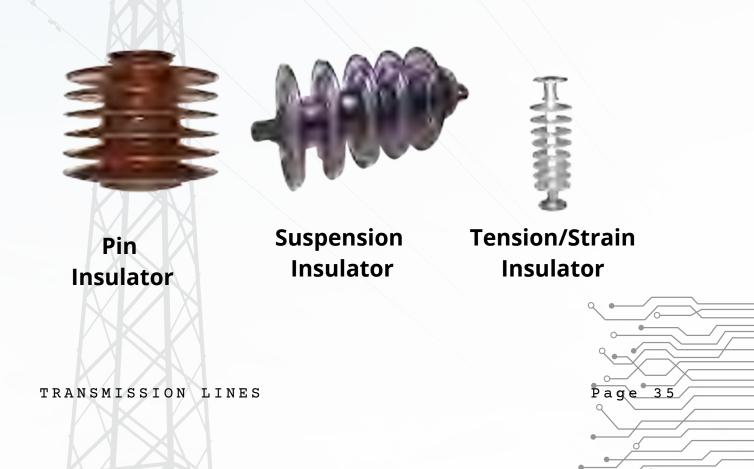
- •This is sometimes called conductor heating
- •To reduce conductor loss simply shorten the transmission line or use a larger diameter wire

•Conductor loss cause a phenomenon called *skin effect*

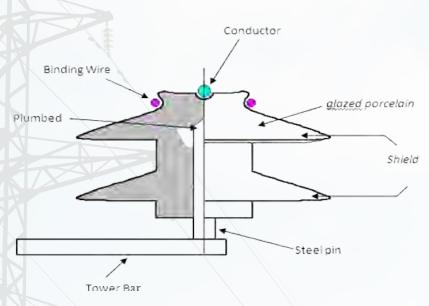
Current flows over the surface

•Potential difference between 2 conductors of a metallic transmission line causing dielectric heating.

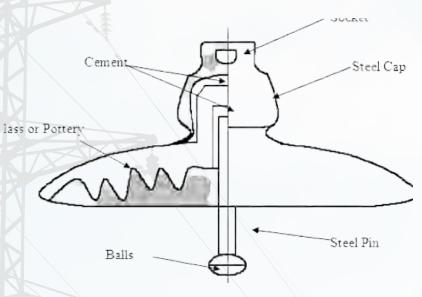
•Heat is form of energy and must be taken from the energy propagating down the line.


•For air dielectric transmission line, the heating loss is negligible.

•For solid core transmission line, dielectric heating loss increase with frequency.



- •The insulators provide necessary insulation between line conductors and supports and thus prevent any leakage current from conductors to earth.
- •A true insulator is a material that does not respond to an electric field and completely resists the flow of electric charge.
- •But, a perfect insulator does not exist, because even insulators contain small numbers of mobile charges (charge carriers) which can carry current.



Pin Insulator

- Small, simple in construction and cheap.
- Used for transmission and distribution of electrical power up to 33kV.
- For lower voltage up to 11kV one piece is used.
- For higher voltage two or more pieces are used.
- It becomes more heavy and costly for higher voltages.
- Mounted on the cross-arm of the pole.
- The line conductor is placed in the groove at the top of insulator and is tied down with binding wire of the same material as the conductor.

Suspension Insulator

- •Used for voltages above 33kV.
- •Have no. of porcelain disc units which are connected to one another in series by using metal links to form a string of porcelain discs.
- •The top of insulator is connected to the cross-arm of the tower while the lowest insulator holds the line conductor.
- •Each unit is designed for the low voltage about 11kV.
- •No. of units depend on the operating voltage i.e. if operating voltage is 132kV, the no. of units required is 12.

Tension@Strain Insulator

- •Used for handling the mechanical stresses at angle positions of the line :
- corner/ sharp curve
- end of lines
- intermediate anchor towers
- long river-crossings

•Low-tension (LT) line – shackle insulators are used

•High-tension (HT) line - assembly of the suspension insulators is used as 'strain insulator' arranged on a horizontal plane.

•On extra long spans (river crossings) two or more strings of strain insulators are used in parallel.

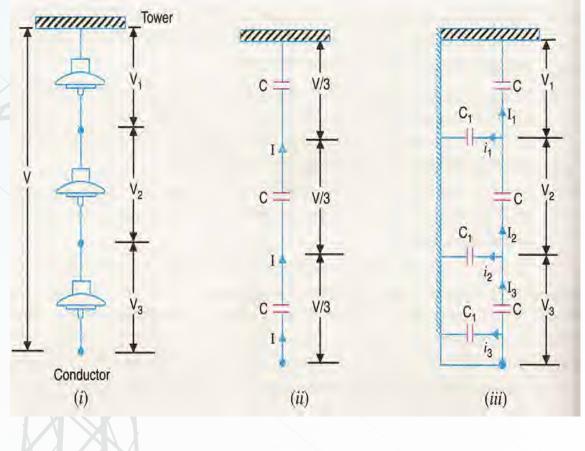
The Advantage & Disadvantages of Pin Insulator

	Advantages	Disadvantages.
Pin-type	Widely used on high voltage distribution lines	The voltage rating is only up to 36kv
	Having a better anti-fog performance	Should use with the spindles
	Easily handle and manufacture	The insulator pin may damage the porcelain thread holes
	Can be mounted as necessary, vertically or horizontally	Only can be used on distribution lines

The Advantage & Disadvantages of Suspension Insulator


	Advantages	Disadvantages
Suspension-type	Each suspension disc is designed for normalrating 11KV(Higher rating 15KV), so by using different numbers of discs, a suspension string can be made suitable for any level.	Suspension insulator string costlier than pin and post type insulator.
	If any one of the disc insulators in a suspension string is damaged, it can be replaced much easily	Suspension string requires more height of supporting structure than that for pin or post insulator to maintain same ground clearance of current conductor.
	Mechanical stresses on the suspension Insulator is less since the line hanged on a flexible suspension string.	The amplitude of free swing of conductors is larger in suspension insulator system, hence, more spacing between conductors should be provided

Page 40


The Advantage & Disadvantages of Tension@Strain Insulator

- •The strain insulators are exactly identical in shape with the suspension insulators.
- These strings are placed in the horizontal plane rather than vertical. As is done in case of suspension insulators.
- •These are used to take the tension of the conductors at line terminals, at angle towers, at road crossings and at junctions of overhead lines with cables. These insulators are therefore known as tension or strain insulators.

Voltage Across Insulator Network

Voltage Across Insulator Network

С	: self capacitance; capacitor - porcelain disc lies in between two metal links
Cı	shunt capacitance; air capacitance - present between metal links and the earthed tower
Vı	: voltage across 1 st dics
V2	: voltage across 2 nd dics
V3	: voltage across 3 rd dics
V	: voltage across conductor to earth

Take K = C1/C or C1 = KC

• Applying Kirchhoff's law C1=KC |2 = |1 + i1 $CV_2 = CV_1 + C_1V_1$ $CV_2 = CV_1 + KCV_1$ $CV_2 = C(V_1 + KV_1)$ $V_2 = (V_1 + KV_1)$ $V_2 = V_1(1 + K)$ $V_1 = V_2/(1 + K)$

Voltage Across Insulator Network

```
Applying Kirchhoff's law to node B,

l<sub>3</sub> = l<sub>2</sub> + i<sub>2</sub>

CV<sub>3</sub> = CV<sub>2</sub> + C<sub>1</sub>(V<sub>1</sub> + V<sub>2</sub>)

CV<sub>3</sub> = CV<sub>2</sub> + K(V<sub>1</sub> + V<sub>2</sub>)

CV<sub>3</sub> = C[V<sub>2</sub> + K(V<sub>1</sub> + V<sub>2</sub>)]

V<sub>3</sub> = [V<sub>2</sub> + K(V<sub>1</sub> + V<sub>2</sub>)]

V<sub>3</sub> = [KV<sub>1</sub> + V<sub>2</sub>(1 + K)]

V<sub>3</sub> = [KV<sub>1</sub> + V<sub>1</sub>(1 + K)(1 + K)]

V<sub>3</sub> = V<sub>1</sub>[K + (1 + K)(1 + K)]

V<sub>3</sub> = V<sub>1</sub>(K + 1 + 2 K + K<sup>2</sup>)

V<sub>3</sub> = V<sub>1</sub>(1 + 3 K + K<sup>2</sup>)
```

Voltage between the conductor and the earthier tower is,

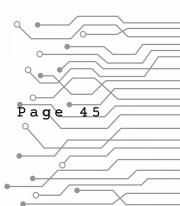
 $V = V_1 + V_2 + V_3$ $V = V_1 + V_1(1 + K) + V_1(1 + 3 K + K^2)$ $V = V_1(3 + 4K + K_2)$ Simplify $V_1 = V / (3 + 4K + K_2)$

Example

A network of four insulators is used to hang a single 33kV, three -phase overhead line conductor. The air or bypass capacity between each lid and tower is 1/10 of the capacity of each unit. Calculate the voltage across each insulator.

Solution:

Given:


E = 33kV $K = C_1/C = 1/10 = 0.1$

 $V_2 = V_1(1 + K)$ $V_3 = V_1(1 + 3 K + K^2)$

 $V_4 = V_1 (1 + 6K + 5K^2 + K^3)$

So:

 $V_{2} = V_{1}(1 + K)$ $V_{2} = V_{1}(1 + 0.1)$ $V_{2} = 1.1V_{1}$ $V_{3} = V_{1}(1 + 3K + K^{2})$ $V_{3} = V_{1}(1 + 3(0.1) + (0.1)^{2})$ $V_{3} = 1.31V_{1}$ $V_{4} = V_{1}(1 + 6K + 5K^{2} + K^{3})$ $V_{4} = V_{1}(1 + 6(0.1) + 5(0.1)^{2} + (0.1)^{3})$ $V_{4} = 1.651V_{1}$

 $E = V_1 + V_2 + V_3 + V_4$ $E = V_1 + 1.1V_1 + 1.31V_1 + 1.651V_1$ $E = 4.062V_4$

 $E = \frac{33000}{\sqrt{3}} = 19050V$

 $V_1 = E / 4.062$ $V_1 = 19050 / 4.062$ $V_1 = 4690V$

So:

- $V_2 = 1.1V_1$ $V_2 = 1.1(4690)$ $V_2 = 5159V$
- $V_{3} = 1.31V_{4}$ $V_{3} = 1.31(4690)$ $V_{3} = 6144V$ $V_{4} = 1.651V_{4}$ $V_{4} = 1.651(4690)$ $V_{4} = 7743V$

The Accessories Needed to Improve Insulator Network Efficiency

Cross Arm Method

Guard Ring Method

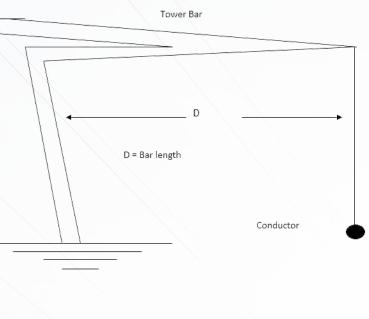
•The voltage across the unit nearer to the conductor is more than the voltage in the unit nearer to the tower.

•100% efficiency means that the voltage across the disc will be exactly same.

Network efficiency

Voltage across the string

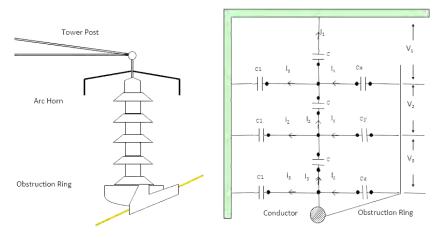
 $n \times Voltage$ across the insulator near to the line conductor


Page 47

The Accessories Needed to Improve Insulator Network Efficiency

Cross Arm Method

- Increase the length of crossarms by increasing the distance between insulator and tower.
- The ratio of shunt capacitance to mutual capacitance (k=C1/C) will reduce to 0.1.
- The network efficiency increases and the voltage distribution is more uniform.
- Only suitable for high and large tower post to support long bar weight and network insulator.



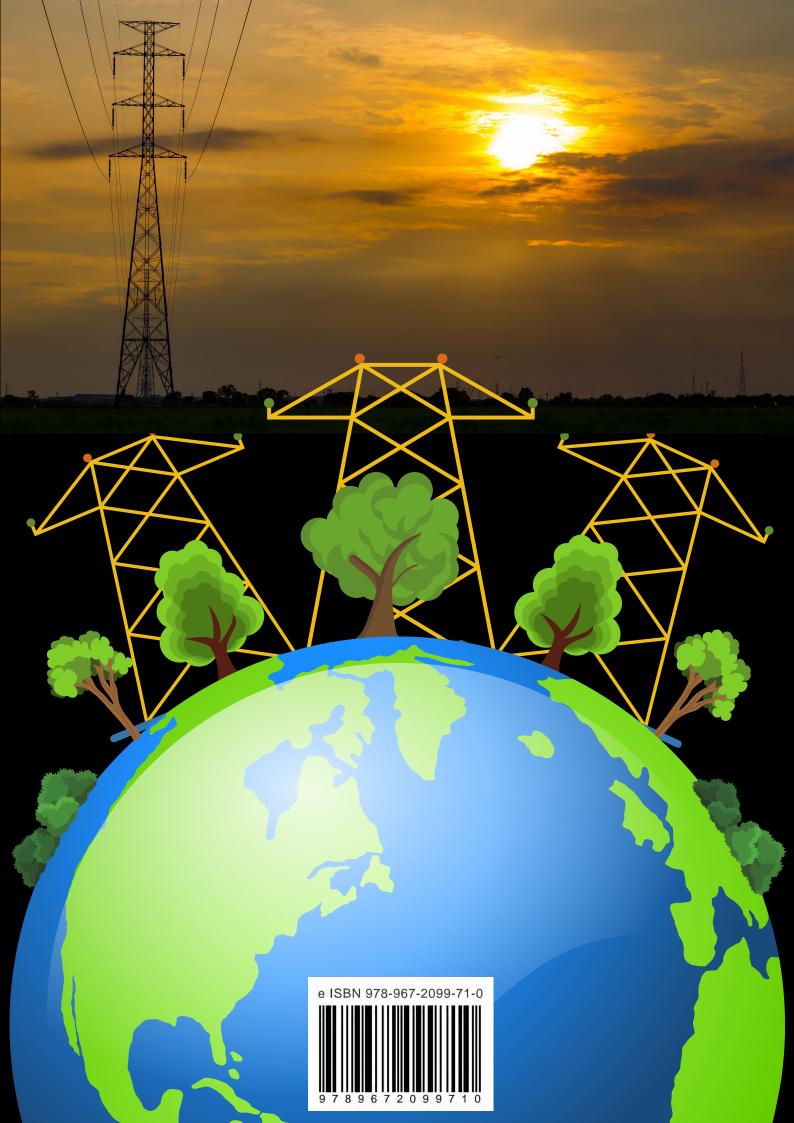
The Accessories Needed to Improve Insulator Network Efficiency

- Ring way obstruction can be done with use *static shield*.
- This static shield assembled on end lower part insulator unit connected by using joining of metal in suspension insulator and then connects to line conductor.
- Reduce the earth capacitance and create capacitance between insulator line and cap.
- Higher capacitance in nearby unit with guard ring and this will reduce voltage fall in the insulator.
- The same voltage in per unit is impossible to obtain practically

(a) Construction

(b) Equivalent circuit

Tower post


Referrences

Main

1. B. M. Weedy, B. J. Cory, N. Jenkins, Janaka B. Ekanayake, Goran Strbac. (2013). Electric Power Systems. Hoboken, United States: John Wiley and Sons Ltd.

Additional

- 1. Ashby, D. (2012). Electrical Engineering 101. Oxford, United Kingdom: Elsevier Science & Technology.
- 2. Kirtley, J. L. (2010). Electric Power Principles : Sources, Conversion, Distribution and Use. Hoboken, United States: John Wiley and Sons Ltd.
- 3. Mehta, V. K. (2011). Principles of Electrical Engineering. New Delhi, India: S Chand & Co Ltd.
- 4. Stiebler, M. (2010). Wind Energy Systems for Electric Power Generation. Springer-Verlag Berlin and Heidelberg GmbH & Co. KG: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG.
- 5. Wadhwa, C. L. (2018). Electrical Power Systems. Tunbridge Wells, United Kingdom: New Academic Science Ltd.

