

 [COMPUTER SYSTEM ARCHITECTURE]

 1

THE COMPUTER SYSTEM

THE BASIC CONCEPTS OF COMPUTER ARCHITECTURE

Introduction

 Computer organization is concerned with the way the hardware components operate

and the way they are connected together to form the computer system. The various

components are assumed to be in the place and the task is to investigate the organizational

structure to verify that the computer parts operate as intended.

 Computer design is concerned with the hardware design of the computer. Once the

computer specifications are formulated, it is the task of the designer to develop hardware

for the system. Computer design is concerned with the determination of what hardware

should be used and how the parts should be connected. This aspect of computer hardware

is sometimes referred to as computer implementation.

 Computer architecture is concerned with the structure and behavior of the computer as

seen by the user. It includes the information format, the instruction set and techniques for

addressing memory. The architectural design of a computer system is concerned with the

specifications of the various functional modules, such as processors and memories and

structuring them together into a computer system.

(M. Morris Mano, 1993)

 A working computer requires hardware and software.

 Hardware: the computer’s physical and electronic components (input devices, a

central processing unit (CPU), memory-storage devices and output devices). All

components are linked together by a communication network or bus.

 Software: the programs that instruct the hardware to perform tasks (operating system

software and applications software).

CHAPTER 1

 [COMPUTER SYSTEM ARCHITECTURE]

 2

Interconnection structures within computer system

Figure 1.1: Components in micro computer system.

Figure 1.2: Interconnection structures in computer system.

1. Input - It accepts data or instructions by way of input

2. Storage - It stores data

3. Processing - It can process data as required by the user

 [COMPUTER SYSTEM ARCHITECTURE]

 3

4. Output - It gives results in the form of output

5. Control - It controls all operations inside a computer.

Figure 1.3: Basic computer operation

Input

 This is the process of entering data and programs in to the computer system.

 You should know that computer is an electronic machine like any other machine which

takes as inputs raw data and performs some processing giving out processed data.

 Therefore, the input unit takes data to the computer in an organized manner for

processing.

Storage

 The process of saving data and instructions permanently is known as storage.

 Data has to be fed into the system before the actual processing starts. It is because the

processing speed of Central Processing Unit (CPU) is so fast that the data has to be

provided to CPU with the same speed. Therefore the data is first stored in the storage unit

for faster access and processing.

 This storage unit or the primary storage of the computer system is designed to do the

above functionality. It provides space for storing data and instructions.

 The storage unit performs the following major functions:

 [COMPUTER SYSTEM ARCHITECTURE]

 4

 All data and instructions are stored here before and after processing.

 Intermediate results of processing are also stored here.

Processing

 The task of performing operations like arithmetic and logical operations is called

processing.

 The Central Processing Unit (CPU) takes data and instructions from the storage unit and

makes all sorts of calculations based on the instructions given and the type of data

provided. It is then sent back to the storage unit.

Output

 This is the process of producing results from the data for getting useful information.

 Similarly the output produced by the computer after processing must also be kept

somewhere inside the computer before being given to you in human readable form.

 Again the output is also stored inside the computer for further processing.

Control (operations inside the computer)

 The manner how instructions are executed and the above operations are performed.

 Controlling of all operations like input, processing and output are performed by control

unit.

 It takes care of step by step processing of all operations inside the computer.

Three basic computer functional units control the operations of a computer

In order to carry out the operations mentioned in the previous section the computer allocates

the task between its various functional units. The computer system is divided into three

separate units for its operation.

They are:

a) Arithmetic and Logic Unit (ALU)

b) Control unit (CU)

c) Central processing unit (CPU)

 [COMPUTER SYSTEM ARCHITECTURE]

 5

Arithmetic and Logic Unit (ALU)

After you enter data through the input device it is stored in the primary storage unit. The

actual processing of the data and instruction are performed by Arithmetic Logical Unit. The

major operations performed by the ALU are addition, subtraction, multiplication, division,

logic and comparison. Data is transferred to ALU from storage unit when required. After

processing the output is returned back to storage unit for further processing or getting stored.

Control unit (CU)

The next component of computer is the Control Unit, which acts like the supervisor seeing

that things are done in proper fashion. The control unit determines the sequence in which

computer programs and instructions are executed. Things like processing of programs stored

in the main memory, interpretation of the instructions and issuing of signals for other units of

the computer to execute them. It also acts as a switch board operator when several users

access the computer simultaneously. Thereby it coordinates the activities of computer’s

peripheral equipment as they perform the input and output. Therefore it is the manager of all

operations mentioned in the previous section.

Central processing unit (CPU)

The ALU and the CU of a computer system are jointly known as the central processing unit.

You may call CPU as the brain of any computer system. It is just like brain that takes all

major decisions, makes all sorts of calculations and directs different parts of the computer

functions by activating and controlling the operations.

 [COMPUTER SYSTEM ARCHITECTURE]

 6

Bus Interconnection

Block diagram to illustrate the basic organization of computer system

Figure 1.4: Block diagram for basic computer system.

A computer system consist four standard components; processor, memory, input / output and

timing. An additional circuits may also be used depends on the application. This includes

analog / digital converters, digital / analog converter, disk drive controller, video display, and

etc.

All components are connected via a bus system that is shared by a group of conductive

component in the system. Bus system is divided into address bus, data bus and control bus.

Processor

 Also known as Control Processing Unit (CPU).

 It controls the whole operation by a system.

 Processor will execute the instruction in computer memory.

Memory

 Is used to save programs and data required by processor.

 Memory can be divided into two types; RAM and ROM.

 The content of a ROM is permanent while the contents of a RAM will be lost when

the power supply is disconnected.

 [COMPUTER SYSTEM ARCHITECTURE]

 7

Input/output

 Allow computer to communicate with the external environment.

 Serial I/O device enables a communication with the larger computer or terminal operator.

 Parallel I/O device involve switch reading operation and data transmission with other

parallel device such as digital-analog converter, analog-digital converter or disk drive.

The Von Neumann model

 Von Neumann proposed this model in 1946.

 Program instructions and Data are both stored as sequences of bits in computer memory.

 Components of the Von Neumann Model

1. Memory: Storage of information (data/program)

2. Processing Unit: Computation/Processing of Information (performs the data

processing)

3. Input: Means of getting information into the computer. e.g. keyboard, mouse (to enter

data and program)

4. Output: Means of getting information out of the computer. e.g. printer, monitor (to

extract results)

5. Control Unit: Makes sure that all the other parts perform their tasks correctly and at

the correct time.

Figure 1.5: The Von Neumann model.

 [COMPUTER SYSTEM ARCHITECTURE]

 8

COMPUTER’S BUS SYSTEM.

Definition of computer’s bus

A bus, in computing, is a set of physical connections (cables, printed circuits, etc.) which can

be shared by multiple hardware components in order to communicate with one another.

A bus is characterized by the amount of information that can be transmitted at once. This

amount, expressed in bits, corresponds to the number of physical lines over which data is sent

simultaneously. In reality, each bus is divided into three subassemblies (refer Figure 1.3):

 The address bus (sometimes called the memory bus) transports memory addresses

which the processor wants to access in order to read or write data. It is a unidirectional

bus.

 The data bus transfers instructions coming from or going to the processor. It is a

bidirectional bus.

 The control bus (or command bus) transports orders and synchronization signals

coming from the control unit and travelling to all other hardware components. It is a

bidirectional bus, as it also transmits response signals from the hardware.

Two types of computer’s bus

There are generally two buses within a computer:

a) Internal bus (system bus)

b) External bus (expansion bus)

 The internal bus (sometimes called the front-side bus, FSB). An internal bus

connects all the internal components of a computer to the motherboard (and thus, the CPU

and internal memory). These types of buses are also referred to as a local bus

 The external bus / expansion bus (sometimes called the input/output bus) allows

various motherboard components (USB, serial, and parallel ports, cards inserted in PCI

connectors, hard drives, CD-ROM and CD-RW drives, etc.) to communicate with one

http://en.kioskea.net/contents/base/binaire.php3

 [COMPUTER SYSTEM ARCHITECTURE]

 9

another. However, it is mainly used to add new devices using what are called expansion

slots connected to the input/output bus.

Concept of Cache Memory

Introduction to cache memory

 Cache memory is a special high-speed storage mechanism. It can be either a reserved

section of main memory or an independent high-speed storage device.

Figure 1.6: Cache and Main Memory

Types Of Cache Memory

The basic characteristic of cache memory is its fast access time. Therefore, very little or no

time must be wasted when searching for words in the cache. The transformation of data from

main memory to cache memory is refers to as a mapping process. Three types of mapping

procedures are of practical interest when considering the organization of cache memory is

direct, associative and set-associative mapped cache.

http://www.webopedia.com/TERM/S/storage.html
http://www.webopedia.com/TERM/M/main_memory.html
http://www.webopedia.com/TERM/S/storage_device.html

 [COMPUTER SYSTEM ARCHITECTURE]

 10

Direct Mapping

- Simplest technique

- maps each block of the main memory into one possible cache line

Figure 1.7: Direct Mapping

 Associative Mapping

- Overcome the disadvantages of the direct mapped by permitting each main memory block

to be loaded into any line of cache

Figure 1.8: Associative Mapping

 [COMPUTER SYSTEM ARCHITECTURE]

 11

Set-associative Mapping

- Combines the strengths of both direct and associative approaching

Figure 1.9: Set Associative Mapping

Input/Output in Computer System

- an element of computer system

- composed of two parts

o Input unit-providing input to processor

o Output unit-receiving output from processor

- Provide interaction with outside world

Block Diagram Input Output Unit

Figure 1.10: Block diagram Input Output Unit

 [COMPUTER SYSTEM ARCHITECTURE]

 12

Input Output Devices

 Input devices

 -human data entry devices and source entry devices

 -human entry devices(keyboard, mouse, joystick, digitizing tablet,..)

 -source entry devices(microphone, soundcard, video camera,…)

 Output devices

 -hardcopy and softcopy devices

 -hardcopy devices(printer, plotter)

 -softcopy devices(monitor, visual display terminal, video output,…)

Input Output Module Diagram

Figure 1.11: Input Output Module Diagram

Configuration through I/O Module

CPU I/O Module I/O Device

 [COMPUTER SYSTEM ARCHITECTURE]

 13

Generic Model of Input Output Module

Figure 1.12: Model Input Output Module

Input Output Steps

1) CPU checks I/O module device status

2) I/O module returns status

3) If ready, CPU requests data transfer

4) I/O module gets data from device

5) I/O module transfers data to CPU

Input Output Data Transfer

Serial communication is the process of sending data one bit at a time, sequentially, over a

communication channel or computer bus.

 Data is transmitted one byte at one time

 Each frame contains 1 start bit,8 data bits, parity bit and 1 stop bit

 High amount of overhead(effect on the computer’s performance)
 Utilizes a transmitter, a receiver and a wire without coordination about its clock to

match the incoming signal

 [COMPUTER SYSTEM ARCHITECTURE]

 14

Input Output Techniques

Programmed I/O

 CPU has direct control over I/O

–Sensing status

–Read/write commands

–Transferring data

 CPU waits for I/O module to complete operation

 Waste the CPU time

I/O perform the task

Figure 1.13: Block diagram Programmed I/O

Interrupt-initiated I/O

 Able to overcome programmed I/O disadvantages

- CPU have to wait for a long time for I/O module

 CPU issue an I/O command to a module and will go on to do other useful work. I/O

will interrupt the CPU when it is ready for exchange data. The CPU execute the data

transfer and resume to its former processing.

Direct Memory Access (DMA)

 Draw back of programmed and interrupt driven I/O

 I/O transfer rate is limited

 Processor is tied up in managing an I/O data transfer.

 When dealing with a large volume of data, more efficient method are required-DMA

 Transfer large amounts of data at high speed without continuous intervention by the

processor

 Special control circuit required in the I/O device interface, called a DMA controller

 DMA controller keeps track of memory locations, transfers directly to memory (via

the bus) independent of the processor

 when processor wishes to read/write, it send the command to DMA module by

issuing information as:-

- Direction of transfer,read(I/O memory) or write (memory I/O)

i/o will not alert or interrupt the CPU

 [COMPUTER SYSTEM ARCHITECTURE]

 15

- Address of the I/O device involved

- The starting location of the block of the data in memory

- The size of the block to be transferred

 The processor continue with other work. It has delegated this DMA module.

 DMA module transfers the entire block of data, directly from memory without

involving processor.

 After completing the data transfer, DMA modules sends interrupt signal to the

processor.

 Processor only involved in beginning and end of the transfer

 [COMPUTER SYSTEM ARCHITECTURE]

 16

How information is transferred over synchronous and asynchronous buses?

Asynchronous and synchronous communication refers to methods by which signals are

transferred in computing technology. These signals allow computers to transfer data between

components within the computer or between the computer and an external network. Most

actions and operations that take place in computers are carefully controlled and occur at

specific times and intervals. Actions that are measured against a time reference, or a clock

signal, are referred to as synchronous actions. Actions that are prompted as a response to

another signal, typically not governed by a clock signal, are referred to as asynchronous

signals.

Typical examples of synchronous signals include the transfer and retrieval of address

information within a computer via the use of an address bus. For example, when a processor

places an address on the address bus, it will hold it there for a specific period of time. Within

this interval, a particular device inside the computer will identify itself as the one being

addressed and acknowledge the commencement of an operation related to that address.

 Synchronous Bus:

 Includes a clock in the control lines

 A fixed protocol for communication: relative to the clock

 Advantage: involves very little logic and can run very fast

 Disadvantages:

 Every device on the bus must run at the same clock rate

 Clock skew => they cannot be long if they are fast

 Asynchronous Bus:

 It is not clocked

 It can accommodate a wide range of devices

 It can be lengthened without worrying about clock skew

 It requires a handshaking protocol

 [COMPUTER SYSTEM ARCHITECTURE]

 17

Common Bus Protocol; PCI And SCSI.

Figure 1.14: Location of PCI and SCSI slot on a motherboard.

Peripheral Component Interconnect (PCI)

PCI is a computer bus for attaching hardware devices in a computer. These devices can take

either the form of an integrated circuit fitted onto the motherboard itself, called a planar

device in the PCI specification, or an expansion card that fits into a slot.

Figure 1.15: PCI Slot

Many devices traditionally provided on expansion cards are now commonly integrated onto

the motherboard itself, meaning that modern PCs often have no cards fitted. However, PCI is

still used for certain specialized cards; although many tasks traditionally performed by

expansion cards may now be performed equally well by USB devices.

http://en.wikipedia.org/wiki/Computer_bus
http://en.wikipedia.org/wiki/Computer_hardware
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Expansion_card

 [COMPUTER SYSTEM ARCHITECTURE]

 18

Small Computer System Interface (SCSI)

SCSI is a set of standards for physically connecting and transferring data between computers

and peripheral devices. The SCSI standards define commands, protocols, and electrical and

optical interfaces. SCSI is most commonly used for hard disks and tape drives, but it can

connect a wide range of other devices, including scanners and CD drives.

Figure 1.16: Adapter SCSI Card

http://en.wikipedia.org/wiki/Peripheral_device
http://en.wikipedia.org/wiki/SCSI_command
http://en.wikipedia.org/wiki/Interface_(computer_science)
http://en.wikipedia.org/wiki/CD-ROM
http://en.wikipedia.org/wiki/Optical_drive

 [COMPUTER SYSTEM ARCHITECTURE]

 19

ARITHMETIC AND LOGIC

DATA REPRESENTATION ON CPU

Humans are accustomed to dealing with decimal numbers, while computers use binary digits.

Octal and hexadecimal numbers are “short forms” for binary numbers, where each

hexadecimal digit takes the place of either three or four binary digits. Since people and

computers speak different “number languages”, it is often necessary to convert numbers from

one of these systems to the other. If you spend any amount of time dealing with computers or

networks, you will find yourself needing to do this on occasion, so it's worth taking a quick

look at how it is

done.

CHAPTER 2

 [COMPUTER SYSTEM ARCHITECTURE]

 20

Decimal, Binary, Octal and Hexadecimal Number

There are 4 types of numbering system used in digital system.

a. Decimal system (N10)

b. Octal system (N8)

c. Hexadecimal system (N16)

d. Binary system (N2)

a. Decimal system (N10)

 Base 10

 Use ten digits

 Number 0,1,2,3,4,5,6,7,8,9

Table 1 : Decimal weights

weights

102 101 100 . 10-1 10-2

100 10 1 . 0.1 0.01

b. Octal system (N8)

 Base 8

 Use eight digits

 Number 0,1,2,3,4,5,6,7

Table 2 : Octal weights

weights

82 81 80 . 8-1 8-2

64 8 1 . 0.125 0.015625

Base number

Basic number 23410

 [COMPUTER SYSTEM ARCHITECTURE]

 21

c. Hexadecimal system (N16)

 Base 16

 Use sixteen digits

 Number 0,1,2,3,4,5,6,7,8,9

A,B,C,D,E,F (A=10, B=11, C=12, D=13, E=14, F=15)

Table 3 : Hexadecimal weights

weights

162 161 160 . 16-1 16-2

256 16 1 . 0.0625 0.0039

d. Binary system (N2)

 Base 2

 Use two digits

 0 and 1

Table 4 : Binary weights

weights

22 21 20 . 2-1 2-2

4 2 1 . 0.5 0.25

Table 5: Computer Numbering System

Binary Digits Octal Digit Hexadecimal Digit Decimal Digit

0000 0 0 0

0001 1 1 1

0010 2 2 2

0011 3 3 3

0100 4 4 4

0101 5 5 5

0110 6 6 6

 [COMPUTER SYSTEM ARCHITECTURE]

 22

0111 7 7 7

1000 8 8

1001 9 9

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F

Arithmetic Operation in Different Number Bases

Addition and subtraction rules for binary number

Basic rules of addition

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 0 with a carry of 1

Basic rules of subtraction

0 - 0 = 0

0 - 1 = 1 with a borrow of 1

1 - 0 = 1

1 - 1 = 0

 [COMPUTER SYSTEM ARCHITECTURE]

 23

a) Addition

Decimal number

Example:

Add the following decimal number:

i. 2510 + 8710

 1 1

 2 510 step1: 5 + 7 = 12-10 = 2

 + 8 710 step2: 1 + 2 + 8 = 11-10 = 1

 1 1 210 step3

Octal number

Example:

Add the following octal number:

i. 3568 + 1248

 1 1

3 5 68 step1: 6 + 4 = 10-8 = 2

 + 1 2 48 step2: 1 + 5 + 2 = 8-8=0

 5 0 28 step3: 1 + 3 + 1 = 5

Exercise :

i) 19510 + 2310

 ii) 89210 + 15810

Exercise :

i) 1238 + 3218

ii) 7338 + 748

 [COMPUTER SYSTEM ARCHITECTURE]

 24

Hexadecimal number

Example:

Add the following hexadecimal number:

i. C116 + E16

 C 1 16 step1: 1 + 14 (E) = 15 (F)

 + E 16 step2: C

 C F 16

Binary number

Example:

Add the following binary number:

i. 1012 + 112

 1 1 1

 1 0 1 2 step1: 1 + 1 = 0 carry 1

+ 1 1 2 step2: 1 + 0 + 1 = 0 carry 1

 1 0 0 0 2 step3: 1 + 1 =0 carry 1
 step4: 1

Exercise :

i) 2B16 + 8416

ii) DF16 + AC16

Exercise :

i. 10102 + 01112

ii. 101112 + 1112

 [COMPUTER SYSTEM ARCHITECTURE]

 25

b) Subtraction

Decimal number

Example:

Sub the following decimal number:

i. 7310 - 1910 = 5410.

 6 10

 7 3 10 step1: 10 + 3 = 13 – 9 = 4

 - 1 9 10 step2: 6 – 1 = 5

 5 4 10

Octal number

Example:

Sub the following octal number:

i. 628 - 538 = 078

 5 8

 6 2 8 step1: 8 + 2 =10-3 = 7

 - 5 3 8 step2: 0

 0 7 8

Exercise :

i. 25410 – 4610

ii. 19210 - 1510

Exercise :

i. 15238 - 3648

ii. 1458 - 648

 [COMPUTER SYSTEM ARCHITECTURE]

 26

Hexadecimal number

Example:

Sub the following octal number:

i. B216 – B16 = A716

 A 16

 B 2 16 step1: 16+ 2 = 18-B(11) =7

 - B 16 step2: A

 A 716

Binary number

Example:

Sub the following binary number:

i. 1012 - 0112 = 0102

 0

 1 0 1 2 step1: 1 - 1 = 0

 - 0 1 1 2 step2 : 0-1 = 1(borrow 1)

 0 1 0 2 step3 : 0 – 0 = 0

Exercise :

i. 8416 – 2A16

ii. A2D16 – 5F16

Exercise :

i. 1002 – 12

ii. 1010112 - 11112

 [COMPUTER SYSTEM ARCHITECTURE]

 27

Numbering system conversion

Binary-To-Decimal Conversion

 To express the value of a given binary number as its decimal equivalent, we just need

to sum the digits after each has been multiplied by its associated weight

Example:

Convert 100.0102 to decimal number.

Solution:

Weight : 22 21 20 2-1 2-2 2-3

 Binary number : 1 0 0 . 0 1 0

 100.0102 = (1 X 22) + (1 X 2-2)

 = 4 + 0.25

 = 4.2510

Exercise :

i) 1101012

ii) 0.10112

LSB
The Least Significant Bit is the rightmost digit which has lowest weight of a given number

MSB
The Most Significant Bit is the leftmost binary digit which has highest weight of a given

number

 [COMPUTER SYSTEM ARCHITECTURE]

 28

Decimal-To- Binary Conversion

 To convert decimal to binary use this approach :

 Divide the decimal value by two and record the remainder

 Repeat first step until the decimal value is equal to zero

 The first remainder produced is the LSB in the binary number and the last

remainder is the MSB.

Example:

Convert 21.1310 to binary number.

Solution:

2 21

2 10 - 1

2 5 - 0

2 2 - 1

2 1 - 0

 0 - 1

0.13 X 2 = 0.26 - 0

0.26 X 2 = 0.52 - 0

0.52 X 2 = 1.04 - 1

21.1310 = 10101.0012

Exercise :

i) 1810

ii) 24.3210

 [COMPUTER SYSTEM ARCHITECTURE]

 29

Octal-To-Decimal Conversion

Example:

Convert 372.248 to decimal number.

Solution:

Weight : 82 81 80 8-1 8-2

 Octal number : 3 7 2 2 4

 372.248 = (3 X 82) + (7 X 81) + (2 X 80) + (2 X 8-1) + (4 X 8-2)

 = 192 + 56 + 2 + 0.25 +0.0625

 = 250.312510

Decimal-To- Octal Conversion

Example:

Convert 82.710 to octal number.

Solution:

8 82

8 10 - 2

8 1 - 2

 0 - 1

0.7 X 8 = 5.6 - 5

0.6 X 8 = 4.8 - 4

0.8 X 8 = 6.4 - 6

82.710 = 122.5468

Exercise :

i) 258

ii) 237.048

Exercise :

i) 5810

ii) 300.3410

 [COMPUTER SYSTEM ARCHITECTURE]

 30

Hexadecimal-To-Decimal Conversion

Example:

Convert 7E7.716 to decimal number.

Solution:

Weight : 162 161 160 16-1

 Hexadecimal number : 7 E 7 7

 7E7.716 = (7 X 162) + (E X 161) + (7X 160) + (7 X 16-1)

 = 1792 + 224 + 7 + 0.4375

 = 2023.437510

Decimal-To- Hexadecimal Conversion

Example:

Convert 2748.7810 to hexadecimal number.

Solution:

16 2748

16 171 - 12(C)

16 10 - 11 (B)

 0 - 10(A)

0.78 X 16 = 12.48 - 12(C)

0.48 X 16 = 7.68 - 7

0.68 X 16 = 10.88 - 10(A)

2748.7810 = ABC.C7A16

Exercise :

i) AF216

ii) 25E816

Exercise :

i) 137510

ii) 650.2010

 [COMPUTER SYSTEM ARCHITECTURE]

 31

Binary-To-Octal Conversion

Each octal digit is represented by a 3 bit binary digit.

Example:

Convert 11000112 to octal number.

Solution:

421

001

421

100

421

011

1 4 3

11000112 = 1438

Octal-To- Binary Conversion

 One (1) octal digit can be represented by three digit binary number.

 Example:

Convert 258 to binary number.

Solution:

2 5

421

010

421

101

258 = 0101012

Exercise :

i) 01.011102

ii) 1101.100011102

Exercise :

i) 12.58

ii) 37.128

 [COMPUTER SYSTEM ARCHITECTURE]

 32

Binary-To-Hexadecimal Conversion

 Break the binary digits into groups of four starting from LSB.

 It may be necessary to add a zero as the MSB in order to complete a grouping of four

digits.

Example:

Convert 1012 to hexadecimal number.

Solution:

 8 4 2 1

1 0 1

5

1012 = 516

Hexadecimal-To- Binary Conversion

 One (1) hexadecimal digit can be represented by four digit binary number.

 Example:

Convert 3A16 to binary number.

Solution:

3 A

 8 4 2 1

0011

 8 4 2 1

1010

3A16 = 1110102

Exercise :

i) 10101112

ii) 11.1000111102

Exercise :

i) FB1716

ii) 12D.216

 [COMPUTER SYSTEM ARCHITECTURE]

 33

 Octal EXAMPLE: 2748.78

 Binary A B

 Hexadecimal

Binary to Octal Use this Formula :

Octal to Binary

Binary to Hexadecimal

Hexadecimal to Binary

EXAMPLE:

1 father 3 son 3 son 1 father

 1 2 5 5 7 14(E)

 421 421 421 8421 8421 8421

Binary 2 Octal

8

Decimal

10
Hexadecimal

16

Decimal

A ()

B ()

8 4 2 18

125

001 010 101

0101 0111 1110

57E

 [COMPUTER SYSTEM ARCHITECTURE]

 34

Coding System

a) Sign and magnitude

The left most bit is the sign bit and the remaining bit are the magnitude bits. The

magnitude bit is in true binary for both positive and negative numbers.

Example:

Express the decimal number -39 as an 8 bit number in the sign-magnitude, 1st

Complement and 2nd Complement Form.

Solution:

First, write the 8 bit number of +39

 +39 = 001001112

In the Sign-Magnitude Form, -39 is produced by changing the sign bits to a 1 and leaving

the magnitude as they are.

+39 = 0 0100111

 Sign bit magnitude bits

 -39 = 10100111 (Sign-Magnitude Form)

b) 1’s Complement and 2’s Complement

– Positive numbers in 1st Complement Form are represented the same way as in

Signs Magnitude Form. Negative numbers, however, are the 1st Complement of

the corresponding positive number.

Exercise :

i) -2510

ii) +7010

 0 - positive num

 1 - negative num

 [COMPUTER SYSTEM ARCHITECTURE]

 35

– In the 1st Complement Form, -39 is produced by taking the 1st Complement of +39

(00100111) and changing bit 0 into 1 and bit 1 into 0.

– Use only in binary number

 +39 = 00100111

 = 11011000 (1st Complement Form)

Example:

Add the following number using 1st Complement Form

 810 + (-310)

i. Convert 810 and -310 into N2

810 10002

-310 +3 00112

 -3 11002 (1
st Complement)

ii. Solve 810 + (-310)

 1 0 0 0

 + 1 1 0 0

 1 0 1 0 0

+ 1

 0 1 0 1 = 510

 8 4 2 1

OR

810 + (-310) = 8 - 3

 = 510

01012

Exercise :

i. 3210
ii. 11410
iii. 110012 - 100112

 [COMPUTER SYSTEM ARCHITECTURE]

 36

c) 2nd Complement Form

– Positive numbers in 2nd Complement Form are represented the same way as in

Signs Magnitude Form and 1st Complement Form. Negative numbers are the 2nd

Complement of the corresponding positive number.

– It is obtained by adding 1 to the LSB of the 1’s complement value.

– In the 2nd Complement Form, -39 is produced by taking the 2nd Complement of

+39 as follows.

2’s complement = 1’s complement + 1

 11011000 (1st Complement Form)

 + 1

 11011001 (2nd Complement Form)

Example:

Add the following number using 2nd Complement Form

 810 + (-310)

i. Convert 810 and -310 into N2

810 10002

-310 +3 00112

 -3 11002 (1
st Complement)

 1 1 0 0

+ 1

2nd

Complement 1 1 0 12

ii. Solve 810 + (-310)

 1 0 0 0

 + 1 1 0 1

Ignore 1 0 1 0 1 = 510

 8 4 2 1

Exercise :

i. 100110012

ii. 2710

 [COMPUTER SYSTEM ARCHITECTURE]

 37

d) Binary Coded Decimal (BCD 8421 Code)

- A way to express each of the decimal digits with a binary code.

- Binary Coded Decimal means that each decimal digit, 0 through 9 is represented by a

binary code of four bits.

- The designation 8421 indicates the binary weights of the four bits (23, 22, 21, 20).

- Invalid codes : 1010, 1011, 1100, 1101 , 1110 , 1111

Table 2: Decimal digit and BCD 8421 Code

Decimal Digit BDC 8421

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

.

.
.
.

24 0010

BCD 8421-To-Binary Conversion

Example:

Convert 1001 0110BCD8421 to binary number.

i. Convert BCD 8421 N10

1001 0110

 9610

9 6

BCD8421 Decimal Binary

 [COMPUTER SYSTEM ARCHITECTURE]

 38

Binary-To-BCD 8421Conversion

Example:

Convert 10010102 to BCD 8421 Code.

i. Convert N2 N10

 10010102 = (1 X 26) + (1 X 23) + (1 X 21)

 = 64 + 8 + 2

 = 7410

ii. Convert N10 NBCD8421

7410 7 4

 01110100 BCD8421

 0111 0100

e) ASCII Code

ASCII Code

– American Standard Code for Information interchange

ii. 9610 N2

2 96

2 48 - 0

2 24 - 0

2 12 - 0

2 6 - 0

2 3 - 0

2 1 - 1

 0 - 1

9610 = 11000002

Exercise :

i. 1000 0011BCD8421

Exercise :

i. 1100 10102

Binary Decimal BCD8421

 [COMPUTER SYSTEM ARCHITECTURE]

 39

– Is an alphanumeric code used in most computers and other electronic equipment.

– ASCII has 128 characters and symbols represented by a 7 bit binary code.

– Represent number, alphabet and symbol.

Table 3: ASCII Code

 X6X5X4
X3X2X1X0 010 011 100 101 110 111

0000 SP 0 @ P ` p
0001 ! 1 A Q a q
0010 “ 2 B R b r
0011 # 3 C S c s
0100 $ 4 D T d t
0101 % 5 E U e u
0110 & 6 F V f v
0111 ‘ 7 G W g w
1000 (8 H X h x
1001) 9 I Y i y
1010 * : J Z j z
1011 + ; K [k {
1100 , < L \ l |
1101 - = M] m }
1110 . > N ^ n ~
1111 / ? O o DEL

Example 1:

Convert GOTO 25 into ASCII Code

Solution:

G - 1000111

O - 1001111

T - 1010100

O - 1001111

SP - 0100000

2 - 0110010

5 - 0110101

Example 2:

Message below are represented in ASCII code. What is the message.

1000100 1101001 1100111 1101001 1110100

1

2

Exercise :

i. DIP2-S1

ii. 1010000 1001111

1001100 1001001

 [COMPUTER SYSTEM ARCHITECTURE]

 40

BOOLEAN ALGEBRA

Logic Gates

- A logic gate is an electronic circuit / device which makes the logical decisions.

- All other logic functions can ultimately be derived from combinations of these three.

- Digital (logic) circuit operate in the binary mode where each input and output voltage is

either a 0 or a 1: the 0 and 1 designation represent predefined voltage ranges. In electronic

digital, it’s known as ‘gate’.

- This characteristic of logic circuits allows us to use the Boolean Algebra as a tool for the

analysis and design of digital systems.

- Boolean Algebra is a relatively simple mathematical tool that allows us to describe the

relationship between logic circuits output and its input as an algebraic equation (a

Boolean Expression).

- 7 types of logic gate are:

i) NOT Gate (Inverter)

ii) AND Gate

iii) OR Gate

iv) NAND Gate

v) NOR Gate

vi) Exclusive-OR Gate (Ex-OR)

vii) Exclusive-NOR Gate (Ex-NOR)

a) Logic Gates Operation

a) NOT Gate (Inverter)

- The Inverter (NOT Gate) performs the operation called inversion or complementation.

- It changes one logic level to the opposite level. In terms of bit, it changes a 1 to a 0 and a

0 to a 1.

- Standard logic symbol for inverter

 [COMPUTER SYSTEM ARCHITECTURE]

 41

- Inverter truth table

o Total number of possible input

(2n)

2n = 21

 = 2

o Maximum value (2n – 1)

2n – 1 = 21 – 1

 = 2 – 1

 = 1

Input Output

A Y

0 1

1 0

- Boolean/Logic Expression

 AY

b) AND Gate

 An AND gate can have two or more inputs but only one output.

 Its output is true if all inputs are true.

 Standard logic symbol for AND Gate

A Y

A

B

Y

 [COMPUTER SYSTEM ARCHITECTURE]

 42

- Truth table for a 2-input AND Gate

o Total number of possible input

(2n)

22 = 22

 = 4

o Maximum value (2n – 1)

2n – 1 = 22 – 1

 = 4 – 1

 = 3

Input Output

A B Y

0 0 0

0 1 0

1 0 0

1 1 1

- Boolean/Logic Expression

ABBAY .

c) OR Gate

 An OR gate can have two or more inputs but only one output.

 Its output is true if at least one input is true.

 Standard logic symbol for OR Gate

- Truth table for a 2-input OR Gate

o Total number of possible input

(2n)

22 = 22

 = 4

o Maximum value (2n – 1)

2n – 1 = 22 – 1

 = 4 – 1

 = 3

A

B

Y

 [COMPUTER SYSTEM ARCHITECTURE]

 43

Input Output

A B Y

0 0 0

0 1 1

1 0 1

1 1 1

- Boolean/Logic Expression

BAY

d) NAND Gate

 This is an AND gate with the output inverted, as shown by the 'o' on the output.

 A NAND gate can have two or more inputs.

 Its output is true if NOT all inputs are true.

 Standard logic symbol for NAND Gate

- Truth table for a 2-input NAND Gate

o Total number of possible input (2n) = 4

o Maximum value (2n – 1) = 3

Input Output

A B Y

0 0 1

0 1 1

1 0 1

1 1 0

- Boolean/Logic Expression

BAY .

A

B

Y

 [COMPUTER SYSTEM ARCHITECTURE]

 44

e) NOR Gate

 This is an OR gate with the output inverted, as shown by the 'o' on the output.

 A NOR gate can have two or more inputs.

 Its output is true if no inputs are true.

 Standard logic symbol for NOR Gate

- Truth table for a 2-input NOR Gate

o Total number of possible input (2n) = 4

o Maximum value (2n – 1) = 3

Input Output

A B Y

0 0 1

0 1 0

1 0 0

1 1 0

- Boolean/Logic Expression

BAY

f) EXCLUSIVE-OR Gate (EX-OR)

 EX-OR gates can only have 2 inputs.

 This is like an OR gate but excluding both inputs being true.

 The output is true if inputs A and B are DIFFERENT.

 Standard logic symbol for NOR Gate

A

B

Y

file:///E:/F1021/notes/gates.htm%23or

 [COMPUTER SYSTEM ARCHITECTURE]

 45

- Truth table for a 2-input NOR Gate

o Total number of possible input (2n) = 4

o Maximum value (2n – 1) = 3

Input Output

A B Y

0 0 0

0 1 1

1 0 1

1 1 0

 Boolean/Logic Expression

BAY

 BABA

 Logic Circuit

g) EXCLUSIVE-NOR Gate (EX-NOR)

 This is an EX-OR gate with the output inverted, as shown by the 'o' on the output.

 EX-NOR gates can only have 2 inputs.

 The output is true if inputs A and B are the SAME (both true or both false)

 Standard logic symbol for NOR Gate

A

B

Y

 [COMPUTER SYSTEM ARCHITECTURE]

 46

- Truth table for a 2-input NOR Gate

o Total number of possible input (2n) = 4

o Maximum value (2n – 1) = 3

Input Output

A B Y

0 0 1

0 1 0

1 0 0

1 1 1

- Boolean/Logic Expression

BAY

 ABBA

 Logic Circuit

A

B

Y

 [COMPUTER SYSTEM ARCHITECTURE]

 47

 A Y=A’ A

 NOT GATE B Y= A.B/AB

 AND GATE

 A

OR GATE B Y=AB

 NAND GATE

 Y =A+B EX NOR GATE

 EX-OR GATE

INPUT OUTPUT

 A Y

 0 1

 1 0

 INPUT

A B

OUTPUT

 Y

0 0 0

0 1 0

1 0 0

1 1 1

INPUT

 A B

OUTPUT

 Y

 0 0 1

 0 1 1

 1 0 1

 1 1 0

INPUT

A B

OUTPUT

 Y

0 0 0
0 1 1
1 0 1
1 1 1

 INPUT

 A B

 OUTPUT

 Y

 0 0 1

 0 1 0

 1 0 0

 1 1 1

 INPUT

 A B

OUPUT

 Y

 0 0 1

 0 1 0

 1 0 0

 1 1 0

NOR-

GATE
INPUT

 A B

OUTPUT

 Y

0 0 0

0 1 1

1 0 1

1 1 0

INPUT

 A B

OUTPUT

 Y

0 0 0

0 1 1

1 0 1

1 1 0

Y= A’
A=0

Y=1

Inverter

Inverter

= AB + AB

If the input numbers

are same, the output

will be ‘0’.

If the input number

are different, the

output will be ‘1’.

If the input

numbers are same,

the output will be

‘1’.

If the input number

are different, the

output will be ‘0’.

 [COMPUTER SYSTEM ARCHITECTURE]

 48

Sequential Logic Circuit

- Sequential logic differs from combinational logic in that the output of the logic device is

dependent not only on the present inputs to the device, but also on past inputs; i.e., the

output of a sequential logic device depends on its present internal state and the present

inputs. This implies that a sequential logic device has some kind of memory of at least

part of its ``history'' (i.e., its previous inputs).

- The memory elements in a sequential circuit are called flip-flops (FF). A flip-flop circuit

has two outputs, one for the normal value and one for the complement value of the

stored bit. Binary information can enter a flip-flop in a variety of ways and gives rise to

different types of flip-flops. Flip-flops can be use as counter, register, memory devices

and logic control circuits.

- 5 types of flip-flops are:

a. SR Flip-Flop

b. Clocked SR Flip-Flop

c. JK Flip-Flop

d. T Flip-Flop

e. D Flip-Flop

SR Flip-Flop

- A flip-flop circuit can be constructed from two NAND gates (Active Low) or two NOR

gates (Active High). Each flip-flop has two outputs, Q and Q', and two inputs, set and

reset. This type of flip-flop is referred to as an SR flip-flop.

a) SR NAND Flip-flop (Active Low)

Symbol

 [COMPUTER SYSTEM ARCHITECTURE]

 49

Truth Table

 INPUT OUTPUT
COMMENTS

S R Q

0 0 0/1 Invalid

 0 1 1 Set (1)

1 0 0 Reset (0)

1 1 0/1 No change

Note : Invalid (Q=Q=1)

Logic Circuit

Timing Diagram

Example 1:

If S and R waveform are applied to the input below, determine the waveform that will be

observed on the Q and Q output.

Q = Q = 1

 [COMPUTER SYSTEM ARCHITECTURE]

 50

b) SR NOR Flip-flop (Active High)

Symbol

Truth Table

INPUT OUTPUT
COMMENTS

S R Q

0 0 0/1 No change

0 1 0 Reset (0)

1 0 1 Set (1)

1 1 0/1 Invalid

Logic Circuit

Timing Diagram

Example 1:

If S and R waveform are applied to the input below, determine the waveform that will be

observed on the Q and Q output.

Q = Q = 0

 [COMPUTER SYSTEM ARCHITECTURE]

 51

Clocked SR Flip-Flop

- Digital systems can operate either asynchronously and synchronously. In asynchronous

systems, the outputs of logic circuits can change state any time one or more of the input

change while in synchronous systems, the exact times at which any output can change

states are determined by a signal commonly called the clock. The clock signal is

distributed to all part of the systems, and most of the systems output can change state only

when the clock makes transition.

- The triggering of a flip-flop is referring to the state of a flip-flop changed by a momentary

change in the input signal. The basic circuits require an input trigger defined by a change

in signal level. This level must be returned to its initial level before a second trigger is

applied. Clocked flip-flops are triggered by pulses.

- 2 types of clock transition are:

a. Positive edge trigger.

b. Negative edge trigger.

Positive edge trigger Negative edge trigger

 When the clock changes from a 0 to a

1.

 When the clock changes from a 1 to a 0.

Logic Circuit

 [COMPUTER SYSTEM ARCHITECTURE]

 52

Timing Diagram

Example 1:

Determine the waveform that will be observed on the Q and Q output of this Active High

Clocked SR flip-flop. Assume Q0 = 0 and positive edge trigger clock.

JK Flip-Flop

- A JK flip-flop is a refinement of the SR flip-flop in that the invalid state of the SR type is

defined in the JK type. Inputs J and K behave like inputs S and R to set and clear the flip-

flop (note that in a JK flip-flop, the letter J is for set and the letter K is for clear). When

logic 1 inputs are applied to both J and K simultaneously, the flip-flop switches to its

complement state, ie., if Q=1, it switches to Q=0 and vice versa. This is also known as

Toggle.

Symbol

Truth Table

INPUT OUTPUT
COMMENTS

J K Q

0 0 0/1 No change

0 1 0 Reset (0)

 [COMPUTER SYSTEM ARCHITECTURE]

 53

1 0 1 Set (1)

1 1 0/1 Toggle

Logic Circuit

Timing Diagram

Example 1:

If J and K waveform are applied to the input below, determine the waveform that will be

observed on the Q and Q output. Assume Q0 = 0 and Negative edge trigger clock.

 Flip-Flop (TOGGLE)

- The T flip-flop is a single input version of the JK flip-flop. The T flip-flop is obtained

from the JK type if both inputs are tied together. The output of the T flip-flop "toggles"

with each clock pulse.

 [COMPUTER SYSTEM ARCHITECTURE]

 54

Symbol

Truth Table

INPUT OUTPUT

T Q

0 No change

1 Toggle

Logic Circuit

Timing Diagram

Example 1:

If T waveform is applied to the input below, determine the waveform that will be observed on

the Q and Q output. Assume Q0 = 0 and Positive edge trigger clock.

 [COMPUTER SYSTEM ARCHITECTURE]

 55

D Flip-Flop

- The D flip-flop is a modification of the clocked SR flip-flop. The D input is sampled

during the occurrence of a clock pulse. If it is 1, the flip-flop is switched to the set state

(unless it was already set). If it is 0, the flip-flop switches to the clear state.

Symbol

Truth Table

Logic Circuit

Timing Diagram

Example 1:

If D waveform is applied to the input below, determine the waveform that will be observed

on the Q and Q output. Assume Q0 = 0 and Positive edge trigger clock.

 [COMPUTER SYSTEM ARCHITECTURE]

 56

Registers

In a computer, a register is one of a small set of data holding places that are part of a

computer processor . A register may hold a computer instruction , a storage address, or any

kind of data (such as a bit sequence or individual characters). Some instructions specify

registers as part of the instruction. For example, an instruction may specify that the contents

of two defined registers be added together and then placed in a specified register. A register

must be large enough to hold an instruction - for example, in a 32-bit instruction computer, a

register must be 32 bits in length. In some computer designs, there are smaller registers - for

example, half-registers - for shorter instructions. Depending on the processor design and

language rules, registers may be numbered or have arbitrary names.

Categories of registers

Registers are normally measured by the number of bits they can hold, for example, an "8-bit

register" or a "32-bit register". A processor often contains several kinds of registers, that can

be classified accordingly to their content or instructions that operate on them:

 User-accessible registers – instructions that can be read or written by machine

instructions. The most common division of user-accessible registers is into data registers

and address registers.

 Data registers can hold numeric values such as integer and, in some architectures,

floating-point values, as well as characters, small bit arrays and other data. In some

older and low end CPUs, a special data register, known as the accumulator, is used

implicitly for many operations.

http://searchcio-midmarket.techtarget.com/definition/processor
http://searchcio-midmarket.techtarget.com/definition/instruction
http://en.wikipedia.org/wiki/8-bit
http://en.wikipedia.org/wiki/32-bit
http://en.wikipedia.org/wiki/Data_%28computing%29
http://en.wikipedia.org/wiki/Integer_%28computer_science%29
http://en.wikipedia.org/wiki/Character_%28computing%29
http://en.wikipedia.org/wiki/Bit_array
http://en.wikipedia.org/wiki/Accumulator_%28computing%29

 [COMPUTER SYSTEM ARCHITECTURE]

 57

 Address registers hold addresses and are used by instructions that indirectly access

primary memory.

Memory Organisation

Introduction To Computer Memory

In computing, memory refers to the physical devices used to store programs (sequences of

instructions) or data (e.g. program state information) on a temporary or permanent basis for

use in a computer or other digital electronic device.

Primary vs Secondary Memory Storage Devices

- Primary memory or the main memory is the memory that is directly accessed by the

CPU to store and retrieve information. The primary memory itself is implemented by two

types of memory technologies. The first is called Random Access Memory (RAM) and

the other is read only memory (ROM)

- Secondary memory (mass memory/external memory/auxiliary memory) is a storage

device that is not accessible directly by the CPU and used as a permanent storage device

that retains data even after power is turned off. Hard drives, floppy disks, tapes, and

optical disks are widely used for secondary storage.

http://en.wikipedia.org/wiki/Memory_address
http://en.wikipedia.org/wiki/Primary_memory
http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/State_(computer_science)
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Digital
http://en.wikipedia.org/wiki/Electronics
http://en.wikipedia.org/wiki/Primary_memory

 [COMPUTER SYSTEM ARCHITECTURE]

 58

INSTRUCTION SET AND ASSEMBLY LANGUAGE PROGRAMMING

Instruction and Instruction Set

An instruction is a binary pattern designed inside a microprocessor to perform a specific

function. The entire group of instructions that a microprocessor supports is called

Instruction Set Eg. 8085 microprosessor has 246 instructions represented by 8 bit binary

value. The 8 bit of binary value is called op-code or instruction byte.

Instruction set: the set of instructions that are interpreted directly in the hardware by the

CPU. These instructions are encoded as bit strings in memory and are fetched and executed

one by one by the processor. They perform primitive operations such as "add 2 to register

i1", "store contents of o6 into memory location 0xFF32A228", etc. Instructions consist of an

operation code (opcode) e.g., load, store, add, etc., and one or more operand addresses.

Computers with different microarchitectures can share a common instruction set

Eg. the Intel Pentium and the AMD Athlon implement nearly identical versions of the x86

instruction set, but have radically different internal designs

Classification of instruction set.

Instructions set can be classified into the following seven functional categories:

1. Data movement instructions

2. Compare instructions

3. Branch instructions

4. Arithmetic Instructions

5. Logic Instructions

6. Bit Manipulation Instructions

7. Shift and rotation

8. Stack and Subroutine Related Instructions

CHAPTER 3

 [COMPUTER SYSTEM ARCHITECTURE]

 59

 Compare instructions

– All compare instructions subtract the source operand, usually the contents of one register

(or memory location) from the contents of the destination operand, usually another

register (or memory location) in order to set the CCR (except the X-bit). The results of

the subtraction are discarded.

– Compare instructions include the following:

CMP Source operand: Any of the addressing modes

Destination: Must be a data register.

CMPA Source operand: Any of the addressing modes

Destination: Must be an address register.

CMPI Source operand: An immediate value

Destination: Any of the addressing modes except address register direct

or immediate.

CMPM Compares one memory location with another

Only addressing mode permitted is address register indirect with auto-

incrementing.

 Data movement instructions

– These instructions move data from one place to another.

– Data movement instructions include the following:

EXG (EXchanGe) The contents of two registers will be exchanged

LEA (Load Effective Address) Calculates a memory location and store it in

an address register.

LINK Allocates a stackframe.

MOVE Copies the contents in one register/memory location to another register

or another memory location.

MOVEA (MOVE Address) Same as MOVE except that the destination is an

address-register.

MOVEM (MOVE Multiple) transfers many registers to or from the memory.

MOVEP (MOVE Peripheral) transfers data to or from an 8 bits peripheral unit.

MOVEQ (MOVE Quick) puts a constant in a dataregister.

PEA (Push Effective Address) calculates a memory address and stores it on

the stack.

SWAP Swaps the word in a dataregister.

 [COMPUTER SYSTEM ARCHITECTURE]

 60

 Branch instructions

– Identified by the mnemonic Bcc where "cc" represents the condition to be checked.

– General form: Bcc Address_Label

– If the condition is true, then control will branch to "Address_Label".

– No effect on condition codes.

– These instructions can be grouped according the type of condition being checked:

 Instructions that depend on a single CCR flag:

BNE BEQ BPL BMI BCC BCS BVC BVS

 Instructions for signed comparison:

BGE BGT BLE BLT

 Instructions for unsigned comparison:

(BHS or BCC) BHI BLS (BLO or BCS)

 Arithmetic Instructions

– These instructions perform arithmetic operations such as addition, subtraction,

increment, and decrement.

– These instructions perform simple two complement operations on binary data.

ADD, ADDA, ADDI, ADDQ, ADDX Different kinds of addition.

CLR Clears an operand.

CMP, CMPA, CMPI, CMPM Compares two operands

DVIS, DIVU Integer division, signed and unsigned.

EXT Makes a sign extension, byte to word or

Information…

MOVE copies data from one location to another and may be qualified by ".B" to move 8

bits; ".W" to move 16 bits; and ".L" to move 32 bits.

MOVE does not change the source location only the destination location.

 [COMPUTER SYSTEM ARCHITECTURE]

 61

word to longword

MULS, MULU Multiplication, signed and unsigned.

NEG, NEGX Twocomplements a number

SUB, SUBA, SUBI, SUBQ, SUBQ Different kinds of subtraction.

TAS (Test And Set) used to synchronise more

than one processor

TST Compares an operand with 0.

 Logic Instructions

– These instructions perform various logical operations (AND, OR Exclusive-OR,

Rotate, Compare and Complement) with the contents of the accumulator.

– These operations perform logical operations on binary numbers. A logical operation

is either "true" (1) or "false" (0).

AND, ANDI Logical AND on two binary integers

OR, ORI Logical OR

EOR, EORI Exclusive OR (XOR)

NOT Returns the operans onecomplement (0 -> 1, 1 -> 0)

 Bit Manipulation Instructions

– These instructions affect single bits in a byte. All instructions test the bit before

affecting it.

BTST Tests a bit

BSET Tests a bit, then set it (1)

BCLR Tests a bit, then reset it (0)

BCHG Tests a bit, then invert it (0 -> 1, 1 -> 0)

 Stack and Subroutine Related Instructions

– These instructions contain branches, jumps, calls.

Bcc A group of 15 instruction that branches depending on the flags.

DBcc 15 instructions that perform loops.

Scc 16 instructions that will set/reset a byte depending on the flags.

BSR, JSR Subroutine calls.

 [COMPUTER SYSTEM ARCHITECTURE]

 62

RTS Return from a subroutine.

JMP Absolute jumps.

RTR Pops the PC and the flags from the stacks.

 Shift and Rotation

– These instructions perform arithmetical and logical shift and rotation with or

without extra carry.

ASL, ASR Arithmetic shift left resp right.

LSL, LSR Locigal shift left resp right.

ROL, ROR Rotation left resp right without extra carry.

ROXL, ROXR Rotation left resp right through extra carry.

ASSEMBLY LANGUAGE

Machine Language And Assembly Language

Machine language

Machine languages are the only languages understood by computers. While easily

understood by computers, machine languages are almost impossible for humans to use

because they consist entirely of numbers.

Programmers, therefore, use either a high-level (C++, Java) programming language or an

assembly language.

 [COMPUTER SYSTEM ARCHITECTURE]

 63

Assembly language

Programs written in high-level languages are translated into assembly language or machine

language by a compiler. Assembly language programs are translated into machine language

by a program called an assembler.

Low-level programming language for computers, microprocessors, microcontrollers, and

other programmable devices. Implements a symbolic representation of the machine codes and

other constants needed to program a given CPU architecture.

Used to translate assembly language statements into the target computer's machine code.

Translation (a one-to-one mapping) from mnemonic statements into machine instructions and

data.

The Addressing Modes Using Proper Instruction Format

Instruction format

– Instructions are listed by mnemonic in alphabetical order. The information provided about

each instruction is: its assembler syntax, its attributes (i.e., whether it takes a byte, word,

or longword operand), its description in words, the effect its execution has on the

condition codes, and the addressing modes it may take.

– The most common fields in instruction formats are:

1. Mode field: Specifies the way the effective address is determined

2. Operation code: Specifies the operations to be performed.

3. Address field: Designates a memory address or a processor register

– Example of instruction format:

Mode Opcode Address

ULANG CLR.W D0; JUMLAH=0

Label op-code operands comment

 [COMPUTER SYSTEM ARCHITECTURE]

 64

Opcodes and Operands

Two of the parts (OPCODE and OPERANDS) are mandatory. An instruction must have an

OPCODE (the thing the instruction is to do), and the appropriate number of operands (the

things it is supposed to do it to).

Labels

Symbolic names which are used to identify memory locations that are referred to explicitly in

the program.

Comments

Messages intended only for human consumption. They have no effect on the translation

process and indeed are not acted on by the Assembler. They are identified in the program by
semicolons. The purpose of comments is to make the program more comprehensible to the

human reader. They help explain a non intuitive aspect of an instruction or a set of

instructions.

Addressing Modes

 Addressing modes are concerned with the way data is accessed.

 Addressing can be by actual address or based on a offset from a known position.

 Theoretically, only absolute addressing is required; however, other addressing modes are

introduced in order to improve efficiency.

Types Of Addressing Modes

1. Absolute Addressing

Absolute Addressing uses the actual address of an operand; either a memory location (e.g:

CLR.B $1234) or,

If a register is involved, this type is also called data register direct, e.g., MOVE.B D2,$2000

2. Immediate Addressing

With Immediate Addressing, the actual operand is part of the instruction;

Example: MOVE.B #25,D2

 [COMPUTER SYSTEM ARCHITECTURE]

 65

3. Immediate addressing with data registers

This is the simplest form of addressing. This mode is used to define a constant or set initial

values of variables.

Advantage: no memory reference other than instruction fetch is required to obtain

operand

Disadvantage: the size of the number is limited to the size of the address field, which most

instruction sets is small compared to word length

Directly operate on the contents of a data register.

Example: MOVE.L D1, D0

4. Immediate addressing with address registers

Directly operate on the contents of an address register.

Example: MOVE.L A1, D0

5. Indirect addressing

Operate on the memory location pointed to by An.

Example: MOVE.L (A0), D0

6. Address Register Indirect Addressing

This addressing mode uses the 8 address registers. These registers are assumed to contain the

address of the data rather than the data itself.

Example: CLR.B (A0)

Similar to indirect addressing. Address field of the instruction refers to a register.

The register contains the effective address of the operand.The address space is limited to the

width of the registers available to store the effective address.

7. Address Register Indirect with Post-incrementing

A variation of address register indirect in which the operand address is incremented after the

operation is performed.

The syntax is (Ai)+

 [COMPUTER SYSTEM ARCHITECTURE]

 66

8. Address Register Indirect with Pre-decrementing

A variation of address register indirect in which the operand is decremented before the

operation is performed.

The syntax is -(Ai)

Assembly Language Instruction

 Series of statements which are either assembly language instructions or directives.

 Instructions are statements like ADD, SUB which are translated into machine code.

 Directives or pseudo-instructions are statements used by the programmer to direct the

assembler on how to proceed in the assembly.

Statement format:

[label:] mnemonic [operands][;comments]

Example of instruction format:

 LOOP CLR.W D0 ;TOTAL = 0

Label:

 Cannot exceed 31 characters

Consists:

 Alphabetic characters both upper and lower case

 Digits 0 through 9

 comments start with semicolon, continue until end of line

 The first character cannot be a digit

 One instruction per line of code

 Spacing: at least one space required after each instruction (mnemonic or pseudo-op),

otherwise doesn’t matter and last line of program must be END pseudo-op.

Opcode
Label Comment

Operands

 [COMPUTER SYSTEM ARCHITECTURE]

 67

Label:

 Must end with a colon when it refers to an opcode generating instruction. Do not

need to end with a colon when it refers to a directive.

Mnemonic and operands:

 Instructions are translated into machine code. Directives do not generate machine

code. They are used by the assembler to organize the program and direct the assembly

process.

Comments:

 Comment must begin with a “;” and its ignored by the assembler.

 Comment should be on a line by itself or at the end of a line:

 Eg: ;My first comment

 MOV AX,1234H ;Initializing….

 Indispensable to the programmers because they make it easier for someone to read
and understand the program

General pseudo-op

ORG

 The function of ORG (origin) is to set an address of instruction or data.

 The format: ORG address

 Example: ORG $2000

EQU

 The function of EQU (equate) is to give a value for certain symbol.

 The format: Symbol EQU value

 Example: SIZE EQU 20

DC

 The function of DC (define constant) is to fill in certain values in a memory.

 The format: [label] DC.data_size value

 Example: ORG $2000

 [COMPUTER SYSTEM ARCHITECTURE]

 68

 DC.W 3

 DC.B $23,49

 DC.L 10

 DC.W 1,4,9,16

002000 00 03 DC.W 3

002002 23 49 DC.B $23,49

002004 00 00
DC.L 10

002006 00 0A

002008 00 01

DC.W

 1,4,9,16

00200A 00 04

00200C 00 09

00200E 00 10

Figure 2: A memory location of the sequence above

DS

 The function of DS (define storage) is almost like to DC command. However it will

not fill any information to the memory.

 The format: [label] DC.data_size value

 Example: ARRAY DS.W 1

 STRING DS.B 8

 PTR DS.L 1

002000 00 00 DS.W 1

002002 00 00 DS.B 8

002004 00 00

002006 00 00

002008 00 00

00200A 00 00 DS.L 1

00200C 00 00

Figure 3: A memory location of the sequence above

END

 The function of END is to tell the assembler that the program has ended.

 The format: END [label]

 [COMPUTER SYSTEM ARCHITECTURE]

 69

Simple program in assembly language program

Data sizes

68000 instructions can direct the processor to work on five data types:

a) bit

b) Binary Coded Decimal (BCD - 4 bits)

c) Byte (8 bits)

d) Word (16 bits)

e) Longword (32 bits)

 Bit:

 Most basic representation.
 Contains either 0 or 1.
 Can be grouped together to represent more meaning.

 Nibble: 4 bits.

 Can represent 16 values (24).
 Not recognized in M68k.
 Need to write special program to handle.

 Byte: 8 bits.

 Indicated by “.B” notation.
 Can hold value up to 256 (28).

 Word: 16 bits.

 Length of most instructions in M68k.
 Can hold value up to 65,535 (216).
 Indicated by “.W” notation.

 Long Word: 32 bits.
 Length of data registers in M68k.
 Can hold value up to 4,294,967,296 (232).
 Indicated by “.L” notation.

Note:
$ = value for hexadecimal
@ = value for octal
% = value for binary
& or blank = decimal
‘AB’ = character ASCII

 [COMPUTER SYSTEM ARCHITECTURE]

 70

Data Register Direct

MOVE.B D0,D3

MOVE.W D0,D3

 Bit (1)

 Nibble
(4)

D3 D0

Byte
(8)

D7 D0

 D15 D0

 Word

(16)

Long
(32)

D31 D0

103488FF

Only bit 0-7 involved in this case because this

operation only involved in byte

 [COMPUTER SYSTEM ARCHITECTURE]

 71

MOVE.L D0,D3

Address Register Direct

MOVEA.L A3,A0

MOVEA.W A3,A0

Absolute Long Mode

CLR.B $10000

010000 42 51 010000 00 51

010002 55 13 010002 55 13

 [COMPUTER SYSTEM ARCHITECTURE]

 72

CLR.W $10000

010000 42 51 010000 00 00

010002 55 13 010002 55 13

CLR.L $10000

010000 42 51 010000 00 00

010002 55 13 010002 00 00

Immediate

MOVE.L #$1FFFF, D0

 Before:D0 = 12345678

 After: D0 = 0001FFFF

Quick Immediate

1. MOVEQ #$2C, D3

 Before: D3 = 1234562C

 After: D3 = 0000002C

2. MOVEQ #$8F, D3

 Before: D3 = 1234568F

 After: D3 = FFFFFF8F

 [COMPUTER SYSTEM ARCHITECTURE]

 73

Arithmetic operation

The basic arithmetic operations are addition (+), subtraction (-), multiplication (x) and

division (/)

Example 1: ADD.B D0, D1

Before : D0 = 00000011 , D1 = 00000022
After : D0 = 00000011 , D1 = 00000033

Example 2: ADD.W #$A2,D1
Before : D1 = 00100500
After : D1 = 001005A2

Example 3 :
ADD.L D0,D1
Before : D0 = 10001111 , D1 = 00002222
After : D0 = 00001111 , D1 = 10003333

Example 4 : ADD.W $1000,D1
Before : D1 = 00110051
After : D1 = 00110081

Example 5: SUB.W #$80,D3

Before : D3 = $001122AB
After : D3 = $0011222B

Example 6: SUB.W D0, D1

Before : D0 = 00001111 , D1 = 00002222
After : D0 = 00000011 , D1 = 00001111

Logic operation

The logic operations are OR, AND and NOT.

Example 1 : AND.B #$3E,D1
Before : D1 = $12345674
After : D1 = $12345634

$1000 30 31

$1002 33 34

$1004 35 36

 [COMPUTER SYSTEM ARCHITECTURE]

 74

Example 2: OR.B D0,D1

Before : D1 = $1234563E , D0 = $98765474

After : D1 = $1234567E , D0 = $98765474

Simple Program

 ORG $1000

 MOVE.B #$1, D0

 MOVE.B #$2, D1

 MOVE.B #@3, D2

 SUB D0, D1

 SUB D1,D2

END

OUTPUT

 MOVE.B #$1, D0 D0 = 00000001

 MOVE.B #$2, D1 D1 = 00000002

 MOVE.B #@3, D2 D2 = 00000003

 SUB D0, D1 D1 = 00000001

 SUB D1,D2 D2 = 00000002

Below show the calculation doing by assembly program using arithmetic and logic operation, you

can solve the operation below with another way. This is how to write the assembly language

program by using 68000 Motorola’s processor.

(2278 + ABC16) OR 100112

Answer:

MOVE.W #@227, D0

MOVE.W #$ABC, D1

ADD.W D0, D1

MOVE.W #%10011, D2

OR.W D1, D2

 [COMPUTER SYSTEM ARCHITECTURE]

 75

Exercise 1:

Write a program to add the content 200, 202 AND 204 where each variable A, B and C.

assume that the program starts at address $2000.

Exercise 2:

Write a program to add together two 8-bit numbers stored in the memory locations called

NILAI1 and NILAI2, and stores the sum in the memory location called KEPUTUSAN using

an assembly language. Assume value for NILAI1 is 100 and NILAI2 is 200.

Introduction to EASy68K Cross Assembler and Simulator

 EASy68K has an editor, an assembler and an simulator for the Motorola 68000 CPU that run

on Windows Operating System and Intel architecture.

 It is used to write and executes programs for the Motorola M68k architecture without extra

hardware

Figure 1(a) Figure 1(b).

 The simulator emulates a Motorola M68000 microprocessor system with the default

memory map shown Figure 1(a) and simulate the hardware shown in Figure 1(b). The

memory map of the hardware can be changed by the user.

 [COMPUTER SYSTEM ARCHITECTURE]

 76

 This code puts your program in memory at 100016.

 The END assembler directive has the label 'START' which point to the beginning of the

program (eg: at address $1000).

 You must not put data here (i.e: immediately after the ORG statement!

 The first line after START must be a valid 68K instruction.

Click to assemble the source

Assembler status will pop up
and make sure the Error = 0

Click Execute to execute the
code

 [COMPUTER SYSTEM ARCHITECTURE]

 77

The first line of the code
pointed by PC declared by
the END START directive

The simulated
register

To see what your
program has

displayed, select the
View menu and then

click "Output
Window"

 [COMPUTER SYSTEM ARCHITECTURE]

 78

THE CENTRAL PROCESSING UNIT

Introduction of Central Processing Unit (CPU)

– The part of computer that performs the bulk of data processing operations is called the

central processing unit (CPU).

– The CPU is commonly referred to the ‘brains of a computer”

– Also know as processor

– Responsible for executing a sequence of instructions called a program

– The program will take inputs, process and output the results.

– The CPU is made up of three major parts; Control unit, Register set and Arithmetic

Logic Unit (ALU) as shown in Figure 1.

 Register set – stores the most frequently used instructions and data

 Arithmetic Logic Unit (ALU) – performs arithmetic or logical operations

 Control – Coordinates and controls all parts of the computer system

Figure 1: Major components of CPU

Control

Register set

Arithmetic Logic

Unit (ALU)

CHAPTER 4

 [COMPUTER SYSTEM ARCHITECTURE]

 79

Instruction cycle

The time period during which one instruction is fetch from memory and execute when a

computer given an instruction in machine language. Each instruction is further divided into

sequence of phases. After the execution the program counter is incremented to point to the

next instruction.

Phase of cycle : - Fetch cycle

 - Decode cycle

 - Execute cycle

 Figure 2: Instruction cycle

Figure 3: Fetch and execute cycle

Fetch Cycle

 Takes the address required from memory, stored it in the instruction register

and moves the program counter

 Program Counter (PC) holds address of next instruction to fetch

 Processor fetches instruction from memory location pointed to by PC

 [COMPUTER SYSTEM ARCHITECTURE]

 80

Decode Cycle

 Figure out what the program is telling the computer to do

 Here, the control unit checks the instruction that is now stored within the

instruction register

 It determines which opcode and addressing mode have been used and as such

what actions need to be carried out in order to execute the instruction in

question

Execute Cycle

 Perform the requested action

 The actual actions which occur during the execute cycle of an instruction

depend on both the instruction itself and the addressing mode specified to be

used to access the data that may be required

Four categories of actions

1. Processor-memory

 data transfer between CPU and main memory

2. Processor I/O

 Data transfer between CPU and I/O module

3. Data processing

 Some arithmetic or logical operation on data

4. Control

 Alteration of sequence of operations (e.g. jump)

 Instruction execution may involve a combination of these

Figure 4 : How a CPU works – Fetch Execute Cycle

 [COMPUTER SYSTEM ARCHITECTURE]

 81

Basic Organization of Stack in Computer System

Stack

– A storage device that stores information in such a manner that the item stored last is the

first item retrieved. Also called last-in first-out (LIFO) list. It is useful for compound

arithmetic operations and nested subroutine calls.

Figure 5: Examples of stack

– The stack in digital computers is a group of memory locations with a register that holds

the address of top of element. This register that holds the address of top of element of the

stack is called Stack Pointer.

– Stack Operations

The two operations of a stack are:

1. Push: Inserts an item on top of stack.

2. Pop : Deletes an item from top of stack.

Figure 6 : Operation of stack

 [COMPUTER SYSTEM ARCHITECTURE]

 82

– Implementation of Stack

In digital computers, stack can be implemented in two ways:

1.Register Stack

2.Memory Stack

– Register Stack

 A stack can be organized as a collection of finite number of registers that are used

to store temporary information during the execution of a program. The stack

pointer (SP) is a register that holds the address of top of element of the stack.

– Memory Stack

 A stack can be implemented in a random access memory (RAM) attached to a

CPU. The implementation of a stack in the CPU is done by assigning a portion of

memory to a stack operation and using a processor register as a stack pointer. The

starting memory location of the stack is specified by the processor register

as stack pointer.

Reverse Polish Notation

Infix notation: - The general way of writing arithmetic expressions is known as infix

 Notation

 - Operators are written between two operands

 - <operand> <operator> <operand>

 - Eg: A + B

Postfix notation: - Also known as Reverse Polish Notation

 - Operators are written after the operands

 - <operand> <operand> <operator>

 - eg: AB+

Prefix notation : - Also known as Polish Notation

 - Operators are written before the operands

 - <operator> <operand> <operand>

 - eg: +AB

– Reverse polish notation : is a postfix notation (places operators after operands)

– (Example)

 Infix notation D + E

Reverse Polish notation DE+ also called postfix.

 [COMPUTER SYSTEM ARCHITECTURE]

 83

– A stack organization is very effective for evaluating arithmetic expressions

 A * B + C * D (AB *)+(CD *) AB * CD * +

 (3 * 4) + (5 * 6) 34 * 56 * +

– Evaluation

Evaluation procedure:

1. Scan the expression from left to right.

2. When an operator is reached, perform the operation with the two operands

found on the left side of the operator.

Replace the two operands and the operator by the result obtained from the

operation.

3. (Example)

 infix 3 * 4 + 5 * 6 = 42

 postfix 3 4 * 5 6 * +

12 5 6 * +

12 30 +

42

– Reverse Polish notation evaluation with a stack. Stack is the most efficient way for

evaluating arithmetic expressions.

– (Example) using stacks to do this.

 i) 3 * 4 + 5 * 6 = 42

 => 3 4 * 5 6 * +

Stack evaluation:

Get value

If value is data: push data

Else if value is operation: pop, pop evaluate and push.

Exercise :

i) (x + y) - z

ii) w * ((x + y) - z)
iii) (2 * a) / ((a + b) * (a - c))

 [COMPUTER SYSTEM ARCHITECTURE]

 84

ii) (4 + 5) (7 – 2)

=> 4 5 + 7 2 - *

Reduced Instruction Set Computer (RISC) and Complex Instruction Set

Computers (CISC)

Complex Instruction Set Computers (CISC) has a large instruction set, with hardware

support for a wide variety of operations. In scientific, engineering, and mathematical

operations with hand coded assembly language (and some business applications with hand

coded assembly language), CISC processors usually perform the most work in the shortest

time.

Reduced Instruction Set Computers (RISC) has a small, compact instruction set. In most

business applications and in programs created by compilers from high level language source,

RISC processors usually perform the most work in the shortest time.

 [COMPUTER SYSTEM ARCHITECTURE]

 85

RISC architecture

The first prototype computer to use reduced instruction set computer (RISC) architecture was

designed by IBM researcher John Cocke and his team in the late 1970s. For his efforts, Cocke

received the Turing Award in 1987, the US National Medal of Science in 1994, and the US

National Medal of Technology in 1991.

IBM RT PC

The RISC Technology Personal Computer (RT PC) was introduced in 1986, and featured the

32-bit RISC architecture.

IBM RS/6000

The IBM RS/6000 was released in 1990. It was the first machine to feature the IBM POWER

architecture. The RS/6000 has gone through several name changes throughout the years,

including IBM eServer™ pSeries®, IBM System p® and IBM Power Systems™.

 [COMPUTER SYSTEM ARCHITECTURE]

 86

The differences between RISC and CISC

Reduced Instruction Set Computer

(RISC)

Complex Instruction Set Computer

(CISC)

 Software hardware

 Single clock, reduce instruction Multi clock complex instruction

 Single word instruction Variable length instruction

 Simple operations Complex operations

 Register to register. “LOAD” and
“STORE” are independent instruction

 Memory-to-Memory. “LOAD” and
“STORE” incorporated in instructions

 Low cycles per second, large code size Small code sizes, high cycles per second

 Spend more transistors on memory

registers

 Transistors used for storing complex

instructions

Concept of Pipelining

A technique used in advanced microprocessors where the microprocessor begins executing a

second instruction before the first has been completed (instruction pre-fetch). That is, several

instructions are in the pipeline simultaneously, each at a different processing stage.

The pipeline is divided into segments and each segment can execute its operation

concurrently with the other segments. When a segment completes an operation, it passes the

result to the next segment in the pipeline and fetches the next operation from the preceding

segment. The final results of each instruction emerge at the end of the pipeline in rapid

succession.

Although formerly a feature only of high-performance and RISC -based microprocessors,

pipelining is now common in microprocessors used in personal computers. Intel's

Pentium chip, for example, uses pipelining to execute as many as six instructions

simultaneously.

Pipelining is also called pipeline processing.

http://www.webopedia.com/TERM/M/microprocessor.html
http://www.webopedia.com/TERM/E/execute.html
http://www.webopedia.com/TERM/I/instruction.html
http://www.webopedia.com/TERM/F/feature.html
http://www.webopedia.com/TERM/R/RISC.html
http://www.webopedia.com/TERM/P/personal_computer.html
http://www.webopedia.com/TERM/C/chip.html

