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Matrices e-book is to help students of semester 1 in polytechnics to understand
more about this fopic contained in the Engineering Mathematics 1 course. Students
will be exposed to an example of questions related to matrices that cover sub-topics
of Construct Matrices, Demonstrate the Operation of Matrices and Demonstrate
Simultaneous Linear equations along with its easy-to-understand solutions. Exercise
questions are also provided in this e-book to strengthen students' understanding and
skills in achieving the Course Learning Outcome (CLO) set by the Polytechnics.
Students need to achieve CLO1, which is they can use a mathematical statement to
describe the relationship between various physical phenomena and CLO2 how to

show mathematical solutions using the appropriate techniques| in mathematics.
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4.0 MATRICES

A matrix Is
a rectangular arréy
of numbers

enclosed
In large brackets.
~ For example, /

a b .
N l¢c d :"

IS a matrix. w

w//



4.1 CONSTRUCT MATRICES

Rows, Columns and Order of Matrices

A matrix ich has mrows n columns

is knbwn as a matrix of order M =N

Number | | Number of
of rows columns

T 20\ Rowt!

Ixmatrix | 5 8§ |e={Row?
(read as 3 by 2) —
\I 3)'—Row3 '

Column1’ | Coumn2| [N




4.1.1 IDENTIFY THE
CHARACTER OF MATRICES

|_|

a. Elements of a matrix
= All the number ina matrx are Known as the
elements of the matrix

N Pl 8-
Elamast

"
i 2
LN
k7

"

is labelled as Pj;




b. Order of a matrix @ ‘

A matn which has m rows and n columns is called & matrix of order m x » or

m X r malr

For example

-'.__. Mk r: '“':'!'_ i Y N
(1 1 2 6)

| -5 412 45 g
1§) G 0 4]

If the matnces above are represented by capdal leffers A, B and C
respectively, then the order of @ach matnx can be wnflen in subscnpls as A,
ey ANA L

%‘ Example : Given amatrizm - |F.- '

Fired thie vaug of ’ Find the valug of

11 X m:':l A m'lﬂ x m'."

255+ {1% 5

2 X 3 matrix




¢. Another Types of Matrices

Row Matrix

A marix that ust has a single row, with order 1
Eample: (; 5 3)

Column Matrix
A mati that Just hs a single column, with order mx 1.

Example; /1
;
3

Rectangular Matrix

An array that has a difierent number of rows and columns, and ts orderis mxn
Exampe:
(4 5 e)




Square Matrix

A square matrix is a matrix where the number of rows is equal to the
number of columns. The following examples are square matrices.

LX2 3X3 + X4
(3 =106 9
o (353 N
34 P
-3 =3 L ) R BTN
L F Iy
Zero Matrix

A zero matrix is one which has all its elements zero. Here is a 3x3 zero
mairix:

000

000 )= 0

000
3x3

In mathematics, particularly linear algebra, a zero matrix or null matrix is a matrix
with all its enfries being zero. Some examples of zero matrices are

00 000
01,1:[9]: Dz,:z: {U U]’ Dz,a: 00 U]




Dagore e x

[l the elements ofa square matnx consist of zeros except the diagonal then tis matrk s called a ciagonal matr.
The following examples are diagonal mafrces.

o)) 30
i \ B0y | \
0o 0 || 08I
0 -3)
00 00
dentty trx

2l the elements of a diagonal mairi consist ofthe value 1, thenthe matme s an idertity matrx. The following
Xamples are identity matrces

10010
ORI | |
| 10| 01010
iy lZ!UI} |:|0010'
001 " | |
o 0001
9o &
v

Andenity matrx s special because when you mulily a mafrx wit
Or when you mulply it with a mair, the matri does not change. For

examples
A=lA=A B=Bl=B



4.1.2 STATE THE

TRANSPOSITION OF A
MATRICES

_ e

When you interchange the rows of a matrix with its columns, you would have

converted a matrix Amn to another matrix Anm. |n other words, a matrix of size

mxn W||| nuw be of mza n X m This new ma‘trlx is called tha transpose of a .

matrix.. The symbol for & tranﬁpuse of a matrlx Ais AT, Lets look at the ;
fulluwmg example S

(a, -a,| - ; ' '
1= [T G Oy
fA=]ay ay | then A =l

ay ay) -

20 0y 2 2 6
if!\:(?. 1 —r:i), then AT=(0 1 D)
6 0 1 0 =pb 1

The transpose of a transpose is the original matrix, (A") = A

Some important properties relating to transpose are:
(AB)T=B"A7
(ABC..Z) =Z .....

A+B) =AT+ B




4.2 OPERATION OF MATRICES

4.2

OPERATION OF MATRICES

421 422 423 424
ADDITION SUBSTRACTIONOF  MULTIPLICATION DETERMINANT
OF MATRICES MATRICES OF MATRICES OF MATRICES

H



4.2.1 ADDITION OF MATRICES

Addition of matrices can be carried out by
adding the corresponding elements of the
matrices involved. Only matrices of the same
order can be added.

[22]-[F2)=[22])"

B r. 8 '

-7F -10

4.2.2 SUBSTRACTION OF /
Substraction of matrices can be carried out by
substract the corresponding elements of the

matrices involved. Only matrices of the same order
can be substracted

[32])-[42)=[+2]00

J [z 2] =

7 10




4.2.3 MULTIPLICATION OF MATRICES

a. Scalar Multiplication

To multiply a matrix with a real
number, we multiply '

each element with this number

.

2] |

2 V(1 2} (2 0} _ _
Express 2| +3 | -4 | as a single matrix
-1 2) 14 5/ 13 -1}
Example : .
P Solution:
2 | 1 2} (2 0) Do the scalar multiplication of
2 |+ 3 =4 | _
-1 2) 14 5] 13 -1} each matrix first
= I 4 ﬁ-i_ 36 I_I 0 H Do the addition and
(=2 4) 112 15) 112 -4)

subtraction of matrices from
left to right



b. Product of Two Matrices

Multiplication of two matrices,

A m,, x B p,,, can only be carried out if n =
p ; and the product is a matrix C of order m

L X q.
’ []
[]
\
Ao n X B oxg = C mxaqg (]
T T
M=t e =aual | T T ]
| .
'@ y
[]
[]
f N
The illustration below shows how two
matrices are multiplied:
A Yy
sum up all the products of

Column 1 the I:unespnmling elements

12+ ( )Y 10)+(-1
30420 30

(-1 o




STEDPS

e

1. Multiply each element in the row
i- row of matrix A by the
corresponding element in the j-
_column of matrix B

2. Sum up all the products
obtained in 1. This produces the
elements Cij of matrix C.

(3. Repeat steps 1 and 2 until the A

elements from all the rows of ,
matrix A are multiplied by the
corresponding elements from all
. the columns matrix B.

/

135
23 = NOT DEFINED
NOT 2 46

—~
R

—_
1x3 23

TIPS :
A2=AXA
Is not the square of
each element in
matrix




. —
> EXAMPLE <

Find the product of each of the following : / |
(]
3 (]
1 4
a) [ S ]( )
(]
Solution '

a)




¢. Matrix equations involving multiplication of two matrices

| p 33 3
1. Given , = , , find the values of p and g '

IN- .
/\ .
Solution
(]
P 3 3 (3 '
2 g lh—2) |2
'
3p—6Y) (3 ,
6 —2g ) |2
3Ip—6 =3 and 6-2q = 2 '
3p=9 -2q = -4
pP=3 q=2
2. Find the values of x and y which satisfy the matrix equation
2 x (—1 3/ (» O
[3 o4 2) -3 9
—2+4x 6+2x y 0
-3 9 ) -3 9
Thus6+2x=0 And .2 +4x=y
- 2x =—6 —-2+4(-3)=y
-
- x=-3 _1’2_14




Express the following matrices as a single matrix

I N '
0 () / |

2. Based on the following matrices, '
'
A:[3 ?] B:[3 4]c={4 5)D={4 —2} .
9 5 -3 =5 2 -1 5 7

Determine: .
a. A+B '

b. A-C

c. D+(B-A)
d B+C

-2 -1 0 -1
3. Given that A = and B = , Find AB and BA.
e )

4. Find the values of x and y for the followings:
x 2 2x 3 9 5
a) + =
1 v 2 v 3 8

: 5% (2 2 8 6 2
bylo 1 7|1 0 =(1 5 0)
1 0

o h e



4.2.4 DETERMINANT OF MATRICES

The determinant of a square matrix is a special number that can
be calculated from the matrix. It is used to represent the real-
value of the matrix which can be used to solve simple algebra '

problems later on.The symbol for the determinant of ;
matrix A is det(A) or A

a. Determinant of a 2 X 2 matrix

For a matrix of size 2 X 2, the method to find the determinant is: R

)
If A= , '
c d

a b
then, det(A) = |A| = ‘ ‘ = (ad — bc).
c d

b. Determinant of a 3 X 3 matrix

The determinant of a 3x3 matrix is a little more tricky and is

found as follows ( for this case assume A is an arbitrary 3x3

matrix A, where the elements are given below) e

a a

11 12

If A= a, a, a,

a;, d;; dy

22 23

then |Al= a,,

32

therefore, |Al= ayy (ﬂzzass — 3y )_ t, (321333 — ) + g (azlﬂsz — 331)



o  —
> EXAMPLE <
1 =

5 (&)
If A = , determine det(A).

Solution

4] =

> 6—(58 6(7))
- 8‘— (8) —6(7)

— (40 —42)
— 2

. |

1 3 2
Determine the determinantof matrix |4 3 0
2 1 2
Solution
3 0 4 0 4 3
|A‘:1 -3 +2
1 2 2 2 2 1

=1(3(2) - 0(1)) —3(4(2) - 0(2)) + 2(4(1) - 3(2))
~1(6-0)—3(8—0) +2(4—-6)

~1(6) - 3(8) + 2(-2)

=22



1. Determine the determinants for the following 2x2 matrices:

(6 13] {—3 8] (4 2] \
a) b) C)
4 12 5 3 -6 3 '

2 16 I 5 3 1 -4 2 .
2. GiventhatA=|-2 3 4|B=|1 0 4| adC=0 4 6| ,
4 27 7 -2 1 2 50

Determine:

a) |Al b) |B| ) ||




4.3 DEMONSTRATE SIMULTANEOUS

LINEAR EQUATIONS

SIMULTANEQUS
LINEAR EQUATIONS

/ \
METHOD ﬂ

A )
-




4.3.1 INVERSE METHOD

STEDS :
AN\

1. Write in a matrix form Ax=bh

2. FInd the determinant of A

3. Find the minor of A
4. Find the of cofactor of A

5. Find the of adjoin of A

6. Find the of inverse of A, A"

7. Find the of THREE (3) variables by using
the x=A"'b




L —
> [ewmmz] <
Solve the simultaneous linear equations
systems below:

X+3y+3z =4
2X -3y 22 =2
Ix+y+2z =95

Step 1 Write in a matrix form Ax = b




Step 3: Find the Minor of 4

{1 3

3 e O O OO O s

by removing row 1 and celumn 1 from A

2 2
M. = 5 ‘=d—{—6}=1ﬂ by removing row 1 and celumn 2 from A
2 —3 .
M,, = g 4 =2—-(-9)="11 by removing row 1 and column 3 from A
3 3 ,
M., = I 6—3=3 by removing row 2 and column 1 from A
1 3 ,
M., = o= 2—-9=-7 by removing row 2 and column 2 from A
1 3 .
Moy = ‘3 1‘ =1-9=-35 by removing row 2 and celumn 3 from A
3 3 .
My, = LS 2‘ =—6G—-(—9)=3 by removing row 3 and column 1 from A
1 3 .
My = 5 5 =—2—_G=-08 by removing row 2 and celumn 2 from A

by removing row 3 and column 3 from A

(M, M, M) (—4 10 11)
Minor A= M, M, M, | So, Minor A= 3 —7 —8|
WMy, My, M) L3 —&% —9|




Step 4: Find the Cofactor of A

(=1PMy, 1My, 1M, )

Cofactor A =/ [_1]3M21 ["1]4M22 ['1]5M23 -
=My (1PMy (-1FMy |

(=1F =4 =1P10  (=1'11)
CofactorA = (173 (-1 -7 (-1 -8||
1 P -8 1f -9l

(-4 =10 11)

So, CofactorA= | =3 -7 8 ’ : This 4 elements will be change the value of +ve and

3 8 -9

-ve from the Minor A.

Step 5 Find the Adioint of 4

(4 3 3)
AdointA= | -10 =7 8 | &——— Transpose the Cofactor Ao getthe Adjaint A
8 -9

!




Step 652 Find the Inverse of 4 | Y il

Lsing the formmula bhbeaelowe:

s =L.-ﬂ|-::|5.-'::-ir1t.-ﬂ|
|-
_1 1 _4 —3 3 1
AT — - —10 —7F =

=71 4 4 & — )
. ! 3 — 37
So., Inverse &, A7 = 10 7 — 8 |
. —11 — 8 =T

Step 7: Find the value of x,y and z by using x = A7'b

x=A7b

(xy ( 4 3 =3 (4
v | = 10 7 —8||2]
vz) \—-11 -8 9 }J15]

P

LY i — LY

::!{I | ! I

y|=| 14



4.3.2 CRAMER’S RULE METHOD

Steps:

1. Write in a matrix form Ax=Db

3. Find A4 by substituting ‘b’ into column 1 of A. Calculate |44

5. Find A3 by substituting ‘b’ into column 3 of A. Calculate |As]




Consider the systems of simultaneous linear equations below:

a,xta,V+as=h

(y Xt ayV+ayz =D,

(X 05Vt a2 = b,

Wirite it in a matrix form, Ax = b.

L L hs )X ';-I;'l I '
gy,  yy dys ¥y |=| b,
= = = '
as; azp  axz )l z) by )
A 4 b !
'
A, = T =
A= A, @,y @ai3 | .
31 @z Agzz)
[ |;_I;‘1 |
You get A1, by substituting | b, | into column 1 of matrix A
-

(b ay ay|
Therefore At= | b, a, ay

\b; a; ay)

(a; by a;| (a; a; b;|

Using the same method, therefore A2=|a,, b, a, Land A= ay Ay b,

\2; by ay) \a ay by

5 f




> [omr] <

Solve the simultaneous linear equations systems below:

-y + 7z = 4
bx -2y + 9z= 5
2x + By —4d=z =3 '

Step 1 Wrhite im a matrix form Ao = b

=} — T oY= A '

a6 @ —2 o v |l=|5
a '

\ 2 =2 4 ) = ) 2 )
'

it > ']

Steo 2 Find the Determinant of 4

P
I
ST P
|
¥
s

* 1
_+|—|:—}

& 5-| _.If —2
4+ 7
2 —4 2 8




Step 4: Find .4, by substituting ‘b’ into column 2 of .4 . Calculate |;1:|

Step 6: Find the 3 variables using the formula

Ay a4

=22
=

I et
=

_|As] . —34

Ay -~ =2~

LM =22 v =—13.z = 17




1. Solve the following Zx + y + L= 8 3x + 2}’ + 42 = 3
equations using the Sr-3y+2z=3 1+y+2=1
inverse method
| Miyti=l o Beythes
2. Solve the following X+ Zy -7=4 bg-5b+6c=3
equations using the 3x-4y-2z=2 Ba-Th-30=

Cramer’s Rule.

S5x+3y+5z=-1 Ta-8h+%=6

| -
3 fy"g;;h; ‘;;{'gg:i”g x+y+2z =1 Srtly-z=10 2
o ane btdyrbz=1 Tr-ytbr=t

Cramer's Rule. Wt2y-dz=12 r+2r-5=0



1. Determine the order of the following matrices:

(~9)

L T

12 —9
(E 10

L

4 20
2. Given thatE =( .r,) F= ( 1) Find E+ F

D . . 6

L

i -1
0 -1 2 ~ .

6 1

I-- 1 1 I-- 2 D --I
4, Given that A= 2 | and B=|-1 3 |
|D

—1 3 3
2. Given A = (2 —2 0
] 1 2

Calculate: a) Determinant | 5 |
by BT —AT




Ayres Jr, F. & Mendelson, E. (2013). Schaum’s Outlines of Calculus. United States of
America: McGraw-Hill.

Bird, J, (2014). Higher Engineering Mathematics (7th Edition). Glassgow, Routedge.

Fakrul Asraf Daud (2010). Engineering Mathematics 3 For Polytechnics Students
- A Problem Solving Approach,Sajadah llmu Publication & Distributor, Kuala Lumpur.

Furner, J. and Kumar, D. (2007). The Mathmematics and Science Integration Argument:
A stand for Teacher Education. Eurasia Journal of Mathematics, Science &
Technology Education.

Glyn James. (2012). Advanced Modern Engineering Mathematics.3rd Edition. Pearson
Education.

H.K Dass (1955). Engineering Mathematics (6th Edition), S.Chand & Company Ltd.,
New Delhi.

John Bird (2010). Engineering Mathematics.(6th Edition), Newness

K.A. Stroud & Dexter J. Booth (2011). Advanced Engineering Mathematics (5th Edition),
Palgrave Macmillan.

Khoo Cheng, Moy Wah Goon, Tey Kim Soon & Wong Teck Sing (1991). Matematik
Tambahan Tingkatan 4 dan 5, Bersama Enterprise, Selangor.

Sivarama Krishna Das P. and Rukmangadachari E. (2011). Engineering Mathematics.
Volume 1, Second Edition. Pearson Publishing.

Stroud, K. A. & Booth, D. J. (2001). Engineering Mathematics (5th Edition). Great
Britain: Palgrave.

Wong Mee Kiong (2014). Soalan-soalan SPM Additional Additional Mathematics
Tingkatan 4 & 5, Sasbadi Sdn. Bhd., Selangor.



BIODATA PENULIS

HASLIZA BINTI HASHIM

KELULUSAN

JAWATAM
ALAMAT

MO . HP
EMAIL

1JAZAH SARJANA PENDIDIKAN TEKMIK & VOKASIOMNAL
1JAZAH SARJANA MUDA KEJURUTERAAN AWAM
DIPLOMA KEJURUTERAAN AWAM SERTAPENDIDIKAN
DAN KEMAHIRAN

PEGAWAI PENDIDIKAN PENGAJIAN TINGGI (PPPT DH 44)
JABATAM MATEMATIK SAINS & KOMPUTER,
POLITEKMNIK SULTAN MIZAN ZAINAL ABIDIN

23000 DUNGUN, TERENGGAMNU

0199144397

hasliza@psmza.edu. my

NOR JULIHA BINTI 5AID

KELULUSAN
JAWATAN
ALAMAT

DIFLOMA KEJURUTERAAN ELEKTRIK SERTA PENDIDIKAN
PEGAW Al PENDIDIKAN PENGAJIAN TINGGI (PPPT DH 34)
JABATAN MATEMATIK SAINS & KOMPUTER,

POLITEEMIK SULTAN MIZANM ZAINAL ABIDIN

23000 DUNGUN, TERENGGANU

0159773497

nor.julina@psmza.edw.my

WANELIANI BINTI WAN HASSAN

KELULUSAN

JAWATAN
ALAMAT

IJAZAH SARJANA MUDA KEJURUTERAAN ELEKTRIK
DIFLOMA KEJURUTERAAN AWAM SERTA PENDIDIKAN
PEGAWAI PENDIDIKAMN PENGAJIAN TINGGI (PPPT DH34)
JABATAN MATEMATIK SAINS & KOMPUTER,
POLITEKNIK SULTAN MIZAN ZAINAL ABIDIN

23000 DUNGUN, TERENGGANL

0129520525

wan.eliani@psmza.edu.my



http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

e ISBN 978-967-2099-65-9

9789672099659



http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

